Optical Nuclear Electric Resonance as Single Qubit Gate for Trapped Neutral Atoms
- URL: http://arxiv.org/abs/2501.11163v2
- Date: Wed, 22 Jan 2025 14:20:18 GMT
- Title: Optical Nuclear Electric Resonance as Single Qubit Gate for Trapped Neutral Atoms
- Authors: Johannes K. Krondorfer, Sebastian Pucher, Matthias Diez, Sebastian Blatt, Andreas W. Hauser,
- Abstract summary: We propose a fast and robust single qubit gate in $87$Sr, utilizing the concept of optical nuclear electric resonance (ONER)
Our simulations show that ONER could enable faster spin operations compared to the state-of-the-art oscillations in this 'atomic qubit'
- Score: 0.0
- License:
- Abstract: The precise control of nuclear spin states is crucial for a wide range of quantum technology applications. Here, we propose a fast and robust single qubit gate in $^{87}$Sr, utilizing the concept of optical nuclear electric resonance (ONER). ONER exploits the interaction between the quadrupole moment of a nucleus and the electric field gradient generated by its electronic environment, enabling spin level transitions via amplitude-modulated laser light. We investigate the hyperfine structure of the 5s$^2$ $^1S_{0}\rightarrow{}$ 5s5p $^3P_1$ optical transition in neutral $^{87}$Sr, and identify the magnetic field strengths and laser parameters necessary to drive spin transitions between the $m_I$ = -9/2 and $m_I$ = -5/2 hyperfine levels in the ground state. Our simulations show that ONER could enable faster spin operations compared to the state-of-the-art oscillations in this 'atomic qubit'. Moreover, we show that the threshold for fault-tolerant quantum computing can be surpassed even in the presence of typical noise sources. These results pave the way for significant advances in nuclear spin control, opening new possibilities for quantum memories and other quantum technologies.
Related papers
- Individual solid-state nuclear spin qubits with coherence exceeding seconds [32.074397322439324]
We present a new platform for quantum information processing consisting of $183$W nuclear spin qubits adjacent to an Er$3+$ crystal.
We demonstrate quantum non-demolition readout of each nuclear spin qubit using the Er$3+$ spin as an ancilla.
We introduce a new scheme for all-microwave single- and two-qubit gates, based on stimulated Raman driving of the coupled electron-nuclear spin system.
arXiv Detail & Related papers (2024-10-14T12:25:39Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - On-demand electrical control of spin qubits [0.49813399226871663]
We demonstrate a technique that enables a emphswitchable interaction between spins and orbital motion of electrons in silicon quantum dots.
The naturally weak effects of the relativistic spin-orbit interaction in silicon are enhanced by more than three orders of magnitude by controlling the energy quantisation of electrons in the nanostructure.
arXiv Detail & Related papers (2022-01-18T00:43:54Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Flopping-mode electric dipole spin resonance in phosphorus donor qubits
in silicon [0.0]
Single spin qubits based on phosphorus donors in silicon are a promising candidate for a large-scale quantum computer.
We present a proposal for a flopping-mode electric dipole spin resonance qubit based on the combined electron and nuclear spin states of a double phosphorus donor quantum dot.
arXiv Detail & Related papers (2021-05-06T18:11:00Z) - Quantum-enhanced sensing of displacements and electric fields with large
trapped-ion crystals [0.0]
We realize a many-body quantum-enhanced sensor to detect weak displacements and electric fields using a large crystal of $sim 150$ trapped ions.
We report quantum enhanced sensitivity to displacements of $8.8 pm 0.4$dB below the standard quantum limit and a sensitivity for measuring electric fields of $240pm10mathrmnVmathrmm-1$ in $1$ second.
arXiv Detail & Related papers (2021-03-15T20:20:57Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Collective Photon Assisted Dressing of Atomic Levels by the number $N$
of Correlated Atoms [0.0]
Many body collective correlations among the atoms, spins or, in general, quantum systems may prove to be a suitable method.
A novel operator is introduced that expresses photon-induced excitation exchange that takes in account energy conservation.
arXiv Detail & Related papers (2020-06-08T12:08:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.