A Conic Transformation Approach for Solving the Perspective-Three-Point Problem
- URL: http://arxiv.org/abs/2504.01620v1
- Date: Wed, 02 Apr 2025 11:27:47 GMT
- Title: A Conic Transformation Approach for Solving the Perspective-Three-Point Problem
- Authors: Haidong Wu, Snehal Bhayani, Janne Heikkilä,
- Abstract summary: We propose a conic transformation method to solve the Perspective-Three-Point (P3P) problem.<n>Our approach builds upon a new formulation based on a transformation that maps the two conics to a new coordinate system.<n>Our method achieves higher speed while maintaining robustness and stability comparable to state-of-the-art methods.
- Score: 9.832854851136535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a conic transformation method to solve the Perspective-Three-Point (P3P) problem. In contrast to the current state-of-the-art solvers, which formulate the P3P problem by intersecting two conics and constructing a degenerate conic to find the intersection, our approach builds upon a new formulation based on a transformation that maps the two conics to a new coordinate system, where one of the conics becomes a standard parabola in a canonical form. This enables expressing one variable in terms of the other variable, and as a consequence, substantially simplifies the problem of finding the conic intersection. Moreover, the polynomial coefficients are fast to compute, and we only need to determine the real-valued intersection points, which avoids the requirement of using computationally expensive complex arithmetic. While the current state-of-the-art methods reduce the conic intersection problem to solving a univariate cubic equation, our approach, despite resulting in a quartic equation, is still faster thanks to this new simplified formulation. Extensive evaluations demonstrate that our method achieves higher speed while maintaining robustness and stability comparable to state-of-the-art methods.
Related papers
- Differentiable Convex Polyhedra Optimization from Multi-view Images [29.653374825428614]
This paper presents a novel approach for the differentiable rendering of convex polyhedra.
It addresses the limitations of recent methods that rely on implicit field supervision.
arXiv Detail & Related papers (2024-07-22T14:53:29Z) - Variable Substitution and Bilinear Programming for Aligning Partially Overlapping Point Sets [48.1015832267945]
This research presents a method to meet requirements through the minimization objective function of the RPM algorithm.
A branch-and-bound (BnB) algorithm is devised, which solely branches over the parameters, thereby boosting convergence rate.
Empirical evaluations demonstrate better robustness of the proposed methodology against non-rigid deformation, positional noise, and outliers, when compared with prevailing state-of-the-art transformations.
arXiv Detail & Related papers (2024-05-14T13:28:57Z) - Geometrically Consistent Partial Shape Matching [50.29468769172704]
Finding correspondences between 3D shapes is a crucial problem in computer vision and graphics.
An often neglected but essential property of matching geometrics is consistency.
We propose a novel integer linear programming partial shape matching formulation.
arXiv Detail & Related papers (2023-09-10T12:21:42Z) - Practical solutions to the relative pose of three calibrated cameras [59.0302033761239]
We study the challenging problem of estimating the relative pose of three calibrated cameras from four point correspondences.
We propose novel efficient solutions to this problem that are based on the simple idea of using four correspondences to estimate an approximate geometry of the first two views.
arXiv Detail & Related papers (2023-03-28T15:50:48Z) - Oracle Complexity of Single-Loop Switching Subgradient Methods for
Non-Smooth Weakly Convex Functional Constrained Optimization [12.84152722535866]
We consider a non- constrained optimization problem where the objective function is weakly convex or weakly convex.
To solve the problem, we consider the subgradient method, which is first-order tuning and easily implement.
arXiv Detail & Related papers (2023-01-30T22:13:14Z) - A conditional gradient homotopy method with applications to Semidefinite Programming [1.3332839594069592]
homotopy-based conditional gradient method for solving convex optimization problems with a large number of simple conic constraints.<n>Our theoretical complexity is competitive when confronted to state-of-the-art SDP, with the decisive advantage of cheap projection-frees.
arXiv Detail & Related papers (2022-07-07T05:48:27Z) - Multiple Convex Objects Image Segmentation via Proximal Alternating
Direction Method of Multipliers [2.294014185517203]
The convex shape prior turns out to be a simple quadratic inequality constraint on the binary indicator function associated with each object.
An image segmentation model incorporating convex shape prior into a probability-based method is proposed.
Numerical experiments on natural and medical images demonstrate that the proposed method is superior to some existing methods.
arXiv Detail & Related papers (2022-03-22T00:05:19Z) - Momentum-inspired Low-Rank Coordinate Descent for Diagonally Constrained
SDPs [12.7944665592057]
We present a novel, practical, and provable approach for solving constrained semidefinite programming (SDP) problems at scale using accelerated non-trivial programming.
arXiv Detail & Related papers (2021-06-16T13:35:40Z) - Acceleration Methods [57.202881673406324]
We first use quadratic optimization problems to introduce two key families of acceleration methods.
We discuss momentum methods in detail, starting with the seminal work of Nesterov.
We conclude by discussing restart schemes, a set of simple techniques for reaching nearly optimal convergence rates.
arXiv Detail & Related papers (2021-01-23T17:58:25Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
In many applications, we need algorithms which can align partially overlapping point sets are invariant to the corresponding corresponding RPM algorithm.
We first show that the objective is a cubic bound function. We then utilize the convex envelopes of trilinear and bilinear monomial transformations to derive its lower bound.
We next develop a branch-and-bound (BnB) algorithm which only branches over the transformation variables and runs efficiently.
arXiv Detail & Related papers (2021-01-19T04:24:23Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.