Momentum-inspired Low-Rank Coordinate Descent for Diagonally Constrained
SDPs
- URL: http://arxiv.org/abs/2106.08775v1
- Date: Wed, 16 Jun 2021 13:35:40 GMT
- Title: Momentum-inspired Low-Rank Coordinate Descent for Diagonally Constrained
SDPs
- Authors: Junhyung Lyle Kim, Jose Antonio Lara Benitez, Mohammad Taha Toghani,
Cameron Wolfe, Zhiwei Zhang, Anastasios Kyrillidis
- Abstract summary: We present a novel, practical, and provable approach for solving constrained semidefinite programming (SDP) problems at scale using accelerated non-trivial programming.
- Score: 12.7944665592057
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel, practical, and provable approach for solving diagonally
constrained semi-definite programming (SDP) problems at scale using accelerated
non-convex programming. Our algorithm non-trivially combines acceleration
motions from convex optimization with coordinate power iteration and matrix
factorization techniques. The algorithm is extremely simple to implement, and
adds only a single extra hyperparameter -- momentum. We prove that our method
admits local linear convergence in the neighborhood of the optimum and always
converges to a first-order critical point. Experimentally, we showcase the
merits of our method on three major application domains: MaxCut, MaxSAT, and
MIMO signal detection. In all cases, our methodology provides significant
speedups over non-convex and convex SDP solvers -- 5X faster than
state-of-the-art non-convex solvers, and 9 to 10^3 X faster than convex SDP
solvers -- with comparable or improved solution quality.
Related papers
- Fast, Scalable, Warm-Start Semidefinite Programming with Spectral
Bundling and Sketching [53.91395791840179]
We present Unified Spectral Bundling with Sketching (USBS), a provably correct, fast and scalable algorithm for solving massive SDPs.
USBS provides a 500x speed-up over the state-of-the-art scalable SDP solver on an instance with over 2 billion decision variables.
arXiv Detail & Related papers (2023-12-19T02:27:22Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - The Curse of Unrolling: Rate of Differentiating Through Optimization [35.327233435055305]
Un differentiation approximates the solution using an iterative solver and differentiates it through the computational path.
We show that we can either 1) choose a large learning rate leading to a fast convergence but accept that the algorithm may have an arbitrarily long burn-in phase or 2) choose a smaller learning rate leading to an immediate but slower convergence.
arXiv Detail & Related papers (2022-09-27T09:27:29Z) - A Variance-Reduced Stochastic Gradient Tracking Algorithm for
Decentralized Optimization with Orthogonality Constraints [7.028225540638832]
We propose a novel algorithm for decentralized optimization with orthogonality constraints.
VRSGT is the first algorithm for decentralized optimization with orthogonality constraints that reduces both sampling and communication complexities simultaneously.
In the numerical experiments, VRGTS has a promising performance in a real-world autonomous sample.
arXiv Detail & Related papers (2022-08-29T14:46:44Z) - STRIDE along Spectrahedral Vertices for Solving Large-Scale Rank-One
Semidefinite Relaxations [27.353023427198806]
We consider solving high-order semidefinite programming relaxations of nonconstrained optimization problems (POPs)
Existing approaches, which solve the SDP independently from the POP, either cannot scale to large problems or suffer from slow convergence due to the typical uneneracy of such SDPs.
We propose a new algorithmic framework called SpecTrahedral vErtices (STRIDE)
arXiv Detail & Related papers (2021-05-28T18:07:16Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex.
Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method.
When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds.
arXiv Detail & Related papers (2020-06-11T18:49:06Z) - On Distributed Non-convex Optimization: Projected Subgradient Method For
Weakly Convex Problems in Networks [13.385373310554327]
The Moreau subgradient method converges linear sharpness problems in machine learning.
A distributed implementation of the subgradient method with a theoretical guarantee is proposed.
arXiv Detail & Related papers (2020-04-28T01:01:49Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.