論文の概要: A Causal Inference Framework for Data Rich Environments
- arxiv url: http://arxiv.org/abs/2504.01702v1
- Date: Wed, 02 Apr 2025 13:04:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:17:54.126535
- Title: A Causal Inference Framework for Data Rich Environments
- Title(参考訳): データリッチ環境のための因果推論フレームワーク
- Authors: Alberto Abadie, Anish Agarwal, Devavrat Shah,
- Abstract要約: 潜在的な結果や治療の課題に対する古典的なモデルが、私たちのフレームワークにどのように適合するかを示します。
特定のニュアンスパラメータに対する十分高速な推定誤差率を持つ任意の推定器に対して、これらの様々な因果パラメータに一貫性があることを確かめる。
- 参考スコア(独自算出の注目度): 17.588417435132538
- License:
- Abstract: We propose a formal model for counterfactual estimation with unobserved confounding in "data-rich" settings, i.e., where there are a large number of units and a large number of measurements per unit. Our model provides a bridge between the structural causal model view of causal inference common in the graphical models literature with that of the latent factor model view common in the potential outcomes literature. We show how classic models for potential outcomes and treatment assignments fit within our framework. We provide an identification argument for the average treatment effect, the average treatment effect on the treated, and the average treatment effect on the untreated. For any estimator that has a fast enough estimation error rate for a certain nuisance parameter, we establish it is consistent for these various causal parameters. We then show principal component regression is one such estimator that leads to consistent estimation, and we analyze the minimal smoothness required of the potential outcomes function for consistency.
- Abstract(参考訳): そこで本研究では,データリッチな設定において,非観測的コンファウンディング(unobserved confounding)による逆実数推定の形式モデルを提案する。
我々のモデルは、図形モデル文献に共通する因果推論の構造因果モデルビューと、潜在的結果文献に共通する潜在因子モデルビューとの橋渡しを提供する。
潜在的な結果や治療の課題に対する古典的なモデルが、私たちのフレームワークにどのように適合するかを示します。
本研究では, 平均治療効果, 平均治療効果, 平均治療効果について検討した。
特定のニュアンスパラメータに対する十分高速な推定誤差率を持つ任意の推定器に対して、これらの様々な因果パラメータに一貫性があることを確かめる。
次に、主成分の回帰が一貫した推定につながるような推定器であることを示し、整合性に対するポテンシャル結果関数の最小の滑らかさを解析する。
関連論文リスト
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
この論文は、モデルフリーの観点から統一された統計学への独立した貢献のシリーズである。
第1章では、機械学習から予測技術を活用する柔軟なメソッドを定式化するために、モデルフリーの視点をどのように利用できるか、詳しく説明している。
第2章では、あるプロセスの進化が他のプロセスに直接影響されるかどうかを記述した地域独立の概念を研究している。
論文 参考訳(メタデータ) (2025-02-11T19:24:09Z) - Deep Learning Methods for the Noniterative Conditional Expectation G-Formula for Causal Inference from Complex Observational Data [3.0958655016140892]
g-formula は観測データを用いて持続的治療戦略の因果効果を推定するために用いられる。
パラメトリックモデルはモデルの誤特定を受けており、バイアスのある因果推定をもたらす可能性がある。
NICE g-formula 推定器のための統合型ディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-28T21:00:46Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
これらの課題に対処するための影響関数フレームワークを開発する。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - C-XGBoost: A tree boosting model for causal effect estimation [8.246161706153805]
因果効果推定は、平均処理効果と、治療の条件平均処理効果を、利用可能なデータから得られる結果に推定することを目的としている。
本稿では,C-XGBoost という新たな因果推論モデルを提案する。
論文 参考訳(メタデータ) (2024-03-31T17:43:37Z) - Linked shrinkage to improve estimation of interaction effects in
regression models [0.0]
回帰モデルにおける双方向相互作用項によく適応する推定器を開発する。
我々は,選択戦略では難しい推論モデルの可能性を評価する。
私たちのモデルは、かなり大きなサンプルサイズであっても、ランダムな森林のような、より高度な機械学習者に対して非常に競争力があります。
論文 参考訳(メタデータ) (2023-09-25T10:03:39Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
これらの目標を達成するためのModel-to-Matchと呼ばれる一般的なフレームワークについて説明する。
Model-to-Matchは、距離メートル法を構築するために変数重要度測定を使用する。
LASSO を用いて Model-to-Match フレームワークを運用する。
論文 参考訳(メタデータ) (2023-02-23T00:43:03Z) - An evaluation framework for comparing causal inference models [3.1372269816123994]
提案手法を用いて、いくつかの最先端因果効果推定モデルを比較した。
このアプローチの背後にある主な動機は、少数のインスタンスやシミュレーションがベンチマークプロセスに与える影響を取り除くことである。
論文 参考訳(メタデータ) (2022-08-31T21:04:20Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Sparse Bayesian Causal Forests for Heterogeneous Treatment Effects
Estimation [0.0]
本稿では,ベイジアン因果樹林のスパース性誘導型を考案する。
観察データを用いて不均一な治療効果を推定する。
論文 参考訳(メタデータ) (2021-02-12T15:24:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。