Den-SOFT: Dense Space-Oriented Light Field DataseT for 6-DOF Immersive Experience
- URL: http://arxiv.org/abs/2403.09973v1
- Date: Fri, 15 Mar 2024 02:39:44 GMT
- Title: Den-SOFT: Dense Space-Oriented Light Field DataseT for 6-DOF Immersive Experience
- Authors: Xiaohang Yu, Zhengxian Yang, Shi Pan, Yuqi Han, Haoxiang Wang, Jun Zhang, Shi Yan, Borong Lin, Lei Yang, Tao Yu, Lu Fang,
- Abstract summary: We have built a custom mobile multi-camera large-space dense light field capture system.
Our aim is to contribute to the development of popular 3D scene reconstruction algorithms.
The collected dataset is much denser than existing datasets.
- Score: 28.651514326042648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We have built a custom mobile multi-camera large-space dense light field capture system, which provides a series of high-quality and sufficiently dense light field images for various scenarios. Our aim is to contribute to the development of popular 3D scene reconstruction algorithms such as IBRnet, NeRF, and 3D Gaussian splitting. More importantly, the collected dataset, which is much denser than existing datasets, may also inspire space-oriented light field reconstruction, which is potentially different from object-centric 3D reconstruction, for immersive VR/AR experiences. We utilized a total of 40 GoPro 10 cameras, capturing images of 5k resolution. The number of photos captured for each scene is no less than 1000, and the average density (view number within a unit sphere) is 134.68. It is also worth noting that our system is capable of efficiently capturing large outdoor scenes. Addressing the current lack of large-space and dense light field datasets, we made efforts to include elements such as sky, reflections, lights and shadows that are of interest to researchers in the field of 3D reconstruction during the data capture process. Finally, we validated the effectiveness of our provided dataset on three popular algorithms and also integrated the reconstructed 3DGS results into the Unity engine, demonstrating the potential of utilizing our datasets to enhance the realism of virtual reality (VR) and create feasible interactive spaces. The dataset is available at our project website.
Related papers
- VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
monocular 3D object detection holds significant importance across various applications, including autonomous driving and robotics.
In this paper, we present VFMM3D, an innovative framework that leverages the capabilities of Vision Foundation Models (VFMs) to accurately transform single-view images into LiDAR point cloud representations.
arXiv Detail & Related papers (2024-04-15T03:12:12Z) - Zero-Shot Multi-Object Scene Completion [59.325611678171974]
We present a 3D scene completion method that recovers the complete geometry of multiple unseen objects in complex scenes from a single RGB-D image.
Our method outperforms the current state-of-the-art on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-03-21T17:59:59Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects.
We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets.
arXiv Detail & Related papers (2023-08-21T10:38:32Z) - 3D Data Augmentation for Driving Scenes on Camera [50.41413053812315]
We propose a 3D data augmentation approach termed Drive-3DAug, aiming at augmenting the driving scenes on camera in the 3D space.
We first utilize Neural Radiance Field (NeRF) to reconstruct the 3D models of background and foreground objects.
Then, augmented driving scenes can be obtained by placing the 3D objects with adapted location and orientation at the pre-defined valid region of backgrounds.
arXiv Detail & Related papers (2023-03-18T05:51:05Z) - 3D reconstruction from spherical images: A review of techniques,
applications, and prospects [2.6432771146480283]
3D reconstruction plays an increasingly important role in modern photogrammetric systems.
With the rapid evolution and extensive use of professional and consumer-grade spherical cameras, spherical images show great potential for the 3D modeling of urban and indoor scenes.
This research provides a thorough survey of the state-of-the-art for 3D reconstruction of spherical images in terms of data acquisition, feature detection and matching, image orientation, and dense matching.
arXiv Detail & Related papers (2023-02-09T08:45:27Z) - Simple and Effective Synthesis of Indoor 3D Scenes [78.95697556834536]
We study the problem of immersive 3D indoor scenes from one or more images.
Our aim is to generate high-resolution images and videos from novel viewpoints.
We propose an image-to-image GAN that maps directly from reprojections of incomplete point clouds to full high-resolution RGB-D images.
arXiv Detail & Related papers (2022-04-06T17:54:46Z) - Multi-sensor large-scale dataset for multi-view 3D reconstruction [63.59401680137808]
We present a new multi-sensor dataset for multi-view 3D surface reconstruction.
It includes registered RGB and depth data from sensors of different resolutions and modalities: smartphones, Intel RealSense, Microsoft Kinect, industrial cameras, and structured-light scanner.
We provide around 1.4 million images of 107 different scenes acquired from 100 viewing directions under 14 lighting conditions.
arXiv Detail & Related papers (2022-03-11T17:32:27Z) - Ground material classification and for UAV-based photogrammetric 3D data
A 2D-3D Hybrid Approach [1.3359609092684614]
In recent years, photogrammetry has been widely used in many areas to create 3D virtual data representing the physical environment.
These cutting-edge technologies have caught the US Army and Navy's attention for the purpose of rapid 3D battlefield reconstruction, virtual training, and simulations.
arXiv Detail & Related papers (2021-09-24T22:29:26Z) - Learning to Dehaze from Realistic Scene with A Fast Physics-based
Dehazing Network [26.92874873109654]
We present a new, large, and diverse dehazing dataset containing real outdoor scenes from High-Definition (HD) 3D movies.
We also propose a light and reliable dehazing network inspired by the physics model.
Our approach outperforms other methods by a large margin and becomes the new state-of-the-art method.
arXiv Detail & Related papers (2020-04-18T08:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.