Epistemic Skills: Reasoning about Knowledge and Oblivion
- URL: http://arxiv.org/abs/2504.01733v1
- Date: Wed, 02 Apr 2025 13:41:42 GMT
- Title: Epistemic Skills: Reasoning about Knowledge and Oblivion
- Authors: Xiaolong Liang, Yì N. Wáng,
- Abstract summary: This paper captures the dynamics of acquiring knowledge and descending into oblivion, while incorporating concepts of group knowledge.<n>The computational complexity of the model checking and satisfiability problems is examined, offering insights into their theoretical foundations and practical implications.
- Score: 0.8287206589886879
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a class of epistemic logics that captures the dynamics of acquiring knowledge and descending into oblivion, while incorporating concepts of group knowledge. The approach is grounded in a system of weighted models, introducing an ``epistemic skills'' metric to represent the epistemic capacities tied to knowledge updates. Within this framework, knowledge acquisition is modeled as a process of upskilling, whereas oblivion is represented as a consequence of downskilling. The framework further enables exploration of ``knowability'' and ``forgettability,'' defined as the potential to gain knowledge through upskilling and to lapse into oblivion through downskilling, respectively. Additionally, it supports a detailed analysis of the distinctions between epistemic de re and de dicto expressions. The computational complexity of the model checking and satisfiability problems is examined, offering insights into their theoretical foundations and practical implications.
Related papers
- How Artificial Intelligence Leads to Knowledge Why: An Inquiry Inspired by Aristotle's Posterior Analytics [0.0]
This work introduces the theoretical framework of causal systems to clarify Aristotle's distinction between knowledge that and knowledge why within artificial intelligence.
It argues that predicting the effects of external interventions is feasible only with knowledge why, providing a more precise understanding of the knowledge necessary for such tasks.
arXiv Detail & Related papers (2025-04-03T09:37:05Z) - Concept-Aware Latent and Explicit Knowledge Integration for Enhanced Cognitive Diagnosis [13.781755345440914]
We propose a Concept-aware Latent and Explicit Knowledge Integration model for cognitive diagnosis (CLEKI-CD)<n>Specifically, a multidimensional vector is constructed according to the students' mastery and exercise difficulty for each knowledge concept from multiple perspectives.<n>We employ a combined cognitive diagnosis layer to integrate both latent and explicit knowledge, further enhancing cognitive diagnosis performance.
arXiv Detail & Related papers (2025-02-04T08:37:16Z) - Knowledge Mechanisms in Large Language Models: A Survey and Perspective [88.51320482620679]
This paper reviews knowledge mechanism analysis from a novel taxonomy including knowledge utilization and evolution.<n>We discuss what knowledge LLMs have learned, the reasons for the fragility of parametric knowledge, and the potential dark knowledge (hypothesis) that will be challenging to address.
arXiv Detail & Related papers (2024-07-22T06:15:59Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - Crystal: Introspective Reasoners Reinforced with Self-Feedback [118.53428015478957]
We propose a novel method to develop an introspective commonsense reasoner, Crystal.
To tackle commonsense problems, it first introspects for knowledge statements related to the given question, and subsequently makes an informed prediction that is grounded in the previously introspected knowledge.
Experiments show that Crystal significantly outperforms both the standard supervised finetuning and chain-of-thought distilled methods, and enhances the transparency of the commonsense reasoning process.
arXiv Detail & Related papers (2023-10-07T21:23:58Z) - Deciphering Raw Data in Neuro-Symbolic Learning with Provable Guarantees [17.58485742162185]
Neuro-symbolic hybrid systems are promising for integrating machine learning and symbolic reasoning.
It remains unclear why a hybrid system succeeds for a specific task and when it may fail given a different knowledge base.
We introduce a novel way of characterising supervision signals from a knowledge base, and establish a criterion for determining the knowledge's efficacy in facilitating successful learning.
arXiv Detail & Related papers (2023-08-21T06:04:53Z) - Worth of knowledge in deep learning [3.132595571344153]
We present a framework inspired by interpretable machine learning to evaluate the worth of knowledge.
Our findings elucidate the complex relationship between data and knowledge, including dependence, synergistic, and substitution effects.
Our model-agnostic framework can be applied to a variety of common network architectures, providing a comprehensive understanding of the role of prior knowledge in deep learning models.
arXiv Detail & Related papers (2023-07-03T02:25:19Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
We design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain.
It tackles the problem from two aspects: extracting knowledge and memorizing knowledge.
It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum.
arXiv Detail & Related papers (2022-08-27T09:27:36Z) - Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization [49.00409552570441]
We study the role of conceptualization in commonsense reasoning, and formulate a framework to replicate human conceptual induction.
We apply the framework to ATOMIC, a large-scale human-annotated CKG, aided by the taxonomy Probase.
arXiv Detail & Related papers (2022-06-03T12:24:49Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.