論文の概要: KD$^{2}$M: An unifying framework for feature knowledge distillation
- arxiv url: http://arxiv.org/abs/2504.01757v1
- Date: Wed, 02 Apr 2025 14:14:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:24:48.360320
- Title: KD$^{2}$M: An unifying framework for feature knowledge distillation
- Title(参考訳): KD$^{2}$M:特徴知識蒸留のための統一フレームワーク
- Authors: Eduardo Fernandes Montesuma,
- Abstract要約: 知識蒸留(KD)は、教師の知識を学生の神経ネットに移そうとする。
本稿では,この戦略を定式化した,分散マッチングによる知識蒸留(KD$2$M)の統一フレームワークを提案する。
- 参考スコア(独自算出の注目度): 6.190850256222902
- License:
- Abstract: Knowledge Distillation (KD) seeks to transfer the knowledge of a teacher, towards a student neural net. This process is often done by matching the networks' predictions (i.e., their output), but, recently several works have proposed to match the distributions of neural nets' activations (i.e., their features), a process known as \emph{distribution matching}. In this paper, we propose an unifying framework, Knowledge Distillation through Distribution Matching (KD$^{2}$M), which formalizes this strategy. Our contributions are threefold. We i) provide an overview of distribution metrics used in distribution matching, ii) benchmark on computer vision datasets, and iii) derive new theoretical results for KD.
- Abstract(参考訳): 知識蒸留(KD)は、教師の知識を学生の神経ネットに移そうとする。
このプロセスは、ネットワークの予測(すなわち、その出力)をマッチングすることで行われることが多いが、近年では、ニューラルネットの活性化(すなわち、それらの特徴)の分布(すなわち、emph{distribution matching} と呼ばれるプロセス)に一致するいくつかの研究が提案されている。
本稿では,この戦略を定式化する,分散マッチングによる知識蒸留(KD$^{2}$M)の統一フレームワークを提案する。
私たちの貢献は3倍です。
我が家
一 分布整合に使用する分布指標の概要
二 コンピュータビジョンデータセットのベンチマーク及び
三 KDの新たな理論的結果の導出。
関連論文リスト
- AICSD: Adaptive Inter-Class Similarity Distillation for Semantic
Segmentation [12.92102548320001]
本稿では,知識蒸留を目的としたICSD (Inter-Class similarity Distillation) を提案する。
提案手法は,教師ネットワークから生徒ネットワークへの高次関係を,ネットワーク出力から各クラス毎のクラス内分布を独立に計算することによって伝達する。
セマンティックセグメンテーションのためのよく知られた2つのデータセットであるCityscapesとPascal VOC 2012の実験により、提案手法の有効性が検証された。
論文 参考訳(メタデータ) (2023-08-08T13:17:20Z) - Distribution Shift Matters for Knowledge Distillation with Webly
Collected Images [91.66661969598755]
異なる分布間の知識蒸留という新しい手法を提案する(KD$3$)。
まず,教師ネットワークと学生ネットワークの併用予測に基づいて,Webで収集したデータから有用なトレーニングインスタンスを動的に選択する。
また、MixDistributionと呼ばれる新しいコントラスト学習ブロックを構築して、新しい分散のインスタンスアライメントで摂動データを生成します。
論文 参考訳(メタデータ) (2023-07-21T10:08:58Z) - Learning to Retain while Acquiring: Combating Distribution-Shift in
Adversarial Data-Free Knowledge Distillation [31.294947552032088]
データフリーな知識蒸留(DFKD)は、教師から学生ニューラルネットワークへの知識伝達を、訓練データがない状態で行うという基本的な考え方により、近年人気を集めている。
本稿では,メタトレインとメタテストとして,知識獲得(新たに生成されたサンプルからの学習)と知識保持(以前に得られたサンプルの知識の保持)の課題を取り扱うことで,メタ学習にインスパイアされたフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-28T03:50:56Z) - CMD: Self-supervised 3D Action Representation Learning with Cross-modal
Mutual Distillation [130.08432609780374]
3D行動認識では、骨格のモダリティの間に豊富な相補的な情報が存在する。
本稿では,CMD(Cross-modal Mutual Distillation)フレームワークを提案する。
提案手法は,既存の自己管理手法より優れ,新しい記録を多数設定する。
論文 参考訳(メタデータ) (2022-08-26T06:06:09Z) - KDExplainer: A Task-oriented Attention Model for Explaining Knowledge
Distillation [59.061835562314066]
KDExplainerと呼ばれる新しいタスク指向の注意モデルを導入し、バニラKDの基礎となる作業メカニズムを明らかにします。
また、仮想注意モジュール(VAM)と呼ばれるポータブルツールを導入し、さまざまなディープニューラルネットワーク(DNN)とシームレスに統合し、KDの下でのパフォーマンスを向上させることができます。
論文 参考訳(メタデータ) (2021-05-10T08:15:26Z) - Deep Archimedean Copulas [98.96141706464425]
ACNetは、構造的特性を強制する、新しい差別化可能なニューラルネットワークアーキテクチャである。
我々は、ACNetが共通のアルキメデスコピュラスを近似し、データに適合する可能性のある新しいコプラを生成することができることを示した。
論文 参考訳(メタデータ) (2020-12-05T22:58:37Z) - Stochastic Precision Ensemble: Self-Knowledge Distillation for Quantized
Deep Neural Networks [27.533162215182422]
エッジデバイスへの展開のために、ディープニューラルネットワーク(QDNN)の量子化が活発に研究されている。
近年の研究では、量子化されたネットワークの性能を向上させるために知識蒸留(KD)法が採用されている。
本研究では,QDNN(SPEQ)のためのアンサンブルトレーニングを提案する。
論文 参考訳(メタデータ) (2020-09-30T08:38:37Z) - Inter-Region Affinity Distillation for Road Marking Segmentation [81.3619453527367]
本研究では,大規模な教員ネットワークからより小さな学生ネットワークへ知識を蒸留する問題について検討する。
我々の手法はInter-Region Affinity KD(IntRA-KD)として知られている。
論文 参考訳(メタデータ) (2020-04-11T04:26:37Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
本稿では,不対向画像分割のための新しい学習手法を提案する。
提案手法では,CTおよびMRI間での畳み込みカーネルの共有により,ネットワークパラメータを多用する。
我々は2つの多クラスセグメンテーション問題に対するアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2020-01-06T20:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。