論文の概要: SOLAQUA: SINTEF Ocean Large Aquaculture Robotics Dataset
- arxiv url: http://arxiv.org/abs/2504.01790v1
- Date: Wed, 02 Apr 2025 14:58:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:55:27.465660
- Title: SOLAQUA: SINTEF Ocean Large Aquaculture Robotics Dataset
- Title(参考訳): SOLAQUA:SINTEF海洋大型養殖ロボティクスデータセット
- Authors: Sveinung Johan Ohrem, Bent Haugaløkken, Eleni Kelasidi,
- Abstract要約: 本稿では,水中ロボットによる海面養殖環境におけるデータセットについて述べる。
データは、Waterlinked A50 DVL、Nortek Nucleus 1000 DVL、Sonardyne Micro Ranger 2 USBL、Sonoptix Mulitbeam Sonar、モノおよびステレオカメラ、そして電力使用量、IMU、圧力、温度などの車両センサーデータから収集された。
研究コミュニティと水産産業の両方が,提案したSOLAQUAデータセットの利用から大きな恩恵を受けることが期待されている。
- 参考スコア(独自算出の注目度): 1.2289361708127877
- License:
- Abstract: This paper presents a dataset gathered with an underwater robot in a sea-based aquaculture setting. Data was gathered from an operational fish farm and includes data from sensors such as the Waterlinked A50 DVL, the Nortek Nucleus 1000 DVL, Sonardyne Micro Ranger 2 USBL, Sonoptix Mulitbeam Sonar, mono and stereo cameras, and vehicle sensor data such as power usage, IMU, pressure, temperature, and more. Data acquisition is performed during both manual and autonomous traversal of the net pen structure. The collected vision data is of undamaged nets with some fish and marine growth presence, and it is expected that both the research community and the aquaculture industry will benefit greatly from the utilization of the proposed SOLAQUA dataset.
- Abstract(参考訳): 本稿では,水中ロボットによる海面養殖環境におけるデータセットについて述べる。
収集されたデータは、Waterlinked A50 DVL、Nortek Nucleus 1000 DVL、Sonardyne Micro Ranger 2 USBL、Sonoptix Mulitbeam Sonar、モノとステレオカメラ、そして電力使用量、IMU、圧力、温度などの車両センサーデータなどである。
データ取得は、ネットペン構造の手動と自律の両方で実行される。
収集された視線データは魚や海産の生長の有無で損傷のない網であり,研究コミュニティと水産産業の双方が提案したSOLAQUAデータセットの利用から大きな恩恵を受けることが期待されている。
関連論文リスト
- EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision [72.84868704100595]
本稿では,地球モニタリングタスクにおける深層学習アプリケーションを強化することを目的とした,リモートセンシングデータの自己監督を目的としたデータセットを提案する。
このデータセットは15テラピクセルのグローバルリモートセンシングデータにまたがっており、NEON、Sentinel、Satellogicによる1mの空間解像度データの新たなリリースなど、さまざまなソースの画像を組み合わせている。
このデータセットは、リモートセンシングデータの異なる課題に取り組むために開発されたMasked Autoencoderである。
論文 参考訳(メタデータ) (2025-01-14T13:42:22Z) - Prediction Model of Aqua Fisheries Using IoT Devices [0.6526824510982799]
この論文では、センサとArduinoを用いたIoTベースのフレームワークを提案し、水質の効率的なモニタリングと制御を行う。
池水にpH、温度、濁度などの異なるセンサを配置し、それぞれが共通のマイクロコントローラボードに接続される。
センサーは水からデータを読み取って、Arduino Microcontrollerを介して Thingspeakという名前のIoTクラウドにCSVファイルとして保存する。
論文 参考訳(メタデータ) (2025-01-11T13:46:10Z) - ODYSSEE: Oyster Detection Yielded by Sensor Systems on Edge Electronics [14.935296890629795]
オイスターは沿岸生態系において重要なキーストーンであり、経済的、環境的、文化的な利益をもたらす。
現在の監視戦略は、しばしば破壊的な方法に依存している。
本研究では, 安定拡散を用いた新しいパイプラインを提案し, 現実的な合成データを用いて収集した実データセットを増強する。
論文 参考訳(メタデータ) (2024-09-11T04:31:09Z) - SeePerSea: Multi-modal Perception Dataset of In-water Objects for Autonomous Surface Vehicles [10.732732686425308]
本稿では,自律航法のためのマルチモーダル認識データセットについて紹介する。
自律型表面車両(ASV)の環境意識を高めるため、水中環境における水中障害物に焦点を当てている。
論文 参考訳(メタデータ) (2024-04-29T04:00:19Z) - Using Multi-Temporal Sentinel-1 and Sentinel-2 data for water bodies
mapping [40.996860106131244]
気候変動は極端な気象現象を激化させ、水不足と激しい降雨の予測不可能の両方を引き起こしている。
本研究の目的は,多様な気象条件下での総合的な水資源モニタリングに有用な知見を提供することである。
論文 参考訳(メタデータ) (2024-01-05T18:11:08Z) - Improving Underwater Visual Tracking With a Large Scale Dataset and
Image Enhancement [70.2429155741593]
本稿では,水中ビジュアルオブジェクト追跡(UVOT)のための新しいデータセットと汎用トラッカ拡張手法を提案する。
水中環境は、一様でない照明条件、視界の低さ、鋭さの欠如、コントラストの低さ、カモフラージュ、懸濁粒子からの反射を示す。
本研究では,追尾品質の向上に特化して設計された水中画像強調アルゴリズムを提案する。
この手法により、最先端(SOTA)ビジュアルトラッカーの最大5.0%のAUCの性能が向上した。
論文 参考訳(メタデータ) (2023-08-30T07:41:26Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
水中音響から風速時系列を検索するための深層学習手法を提案する。
我々のアプローチは、事前の物理知識と計算効率の両面から恩恵を受けるために、データ同化と学習ベースのフレームワークをブリッジする。
論文 参考訳(メタデータ) (2022-08-18T15:27:40Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
産業用IoT(Industrial Internet of Things)の継続的な拡大により、IIoT機器は毎回大量のユーザデータを生成する。
IIoTの分野で、これらの時系列データを効率的かつ安全な方法で管理する方法は、依然として未解決の問題である。
本稿では,無線ネットワーク環境におけるIIoT機器データ管理におけるFL技術の適用について検討する。
論文 参考訳(メタデータ) (2022-02-03T07:12:36Z) - The Fishnet Open Images Database: A Dataset for Fish Detection and
Fine-Grained Categorization in Fisheries [0.0]
商業漁船における魚の発見と細粒度分類の大規模データセットである魚網オープン画像データベースについて述べる。
データセットは、34のオブジェクトクラスを含む86,029の画像で構成されており、これまでで最大かつ最も多様な水産EM画像の公開データセットとなっている。
我々は,既存の検出・分類アルゴリズムの性能を評価し,そのデータセットが漁業におけるコンピュータビジョンアルゴリズム開発のための挑戦的なベンチマークとなることを示す。
論文 参考訳(メタデータ) (2021-06-16T23:53:18Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。