Quantum Meets SAR: A Novel Range-Doppler Algorithm for Next-Gen Earth Observation
- URL: http://arxiv.org/abs/2504.01832v2
- Date: Tue, 15 Apr 2025 10:06:02 GMT
- Title: Quantum Meets SAR: A Novel Range-Doppler Algorithm for Next-Gen Earth Observation
- Authors: Khalil Al Salahat, Mohamad El Moussawi, Veera Ganesh Yalla, Ali J. Ghandour,
- Abstract summary: This paper presents a Quantum Range Doppler Algorithm (QRDA) to accelerate processing compared to the classical FFT.<n>It introduces a quantum implementation of the Range Cell Migration Correction (RCMC) in the Fourier domain, a critical step in the RDA pipeline.
- Score: 0.31457219084519
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Synthetic Aperture Radar (SAR) plays a vital role in remote sensing due to its ability to capture high-resolution images regardless of weather conditions or daylight. However, to transform the raw SAR signals into interpretable imagery, advanced data processing techniques are essential. A widely used technique for this purpose is the Range Doppler Algorithm (RDA), which takes advantage of Fast Fourier Transform (FFT) to convert signals into the frequency domain for further processing. However, the computational cost of this approach becomes significant when dealing with large datasets. This paper presents a Quantum Range Doppler Algorithm (QRDA) that utilizes the Quantum Fourier Transform (QFT) to accelerate processing compared to the classical FFT. Furthermore, it introduces a quantum implementation of the Range Cell Migration Correction (RCMC) in the Fourier domain, a critical step in the RDA pipeline, and evaluates its performance relative to its classical counterpart.
Related papers
- A Quantum Range-Doppler Algorithm for Synthetic Aperture Radar Image Formation [48.123217909844946]
We show how in general reference functions, a key element in many SAR focusing algorithms, can be mapped to quantum gates.
We find that the core of the quantum range-Doppler algorithm has a computational complexity $O(N)$, less than its classical counterpart.
arXiv Detail & Related papers (2025-04-29T14:24:23Z) - Adaptive Random Fourier Features Training Stabilized By Resampling With Applications in Image Regression [0.8947831206263182]
We present an enhanced adaptive random Fourier features (ARFF) training algorithm for shallow neural networks.<n>This method uses a particle filter-type resampling technique to stabilize the training process and reduce the sensitivity to parameter choices.
arXiv Detail & Related papers (2024-10-08T22:08:03Z) - F2former: When Fractional Fourier Meets Deep Wiener Deconvolution and Selective Frequency Transformer for Image Deblurring [8.296475046681696]
We propose a novel approach based on the Fractional Fourier Transform (FRFT), a unified spatial-frequency representation.
We show that the performance of our proposed method is superior to other state-of-the-art (SOTA) approaches.
arXiv Detail & Related papers (2024-09-03T17:05:12Z) - Research on Feature Extraction Data Processing System For MRI of Brain Diseases Based on Computer Deep Learning [3.02112659232987]
This project proposes the use of matrix operations by combining mixed noise elimination methods with wavelet analysis to replace traditional iterative algorithms.
Experiments show that this algorithm is the fastest in computing time, and its detection effect is comparable to the traditional iterative algorithm.
arXiv Detail & Related papers (2024-06-23T18:41:43Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
This paper aims to address a common challenge in deep learning-based image transformation methods, such as image enhancement and super-resolution.
We introduce a novel and simple Frequency Distribution Loss (FDL) for computing distribution distance within the frequency domain.
Our method is empirically proven effective as a training constraint due to the thoughtful utilization of global information in the frequency domain.
arXiv Detail & Related papers (2024-02-28T09:27:41Z) - Deep Unfolded Simulated Bifurcation for Massive MIMO Signal Detection [7.969977930633441]
Various signal detectors based on deep learning techniques and quantum(-inspired) algorithms have been proposed to improve the detection performance.
This paper focuses on the simulated bifurcation (SB) algorithm, a quantum-inspired algorithm.
arXiv Detail & Related papers (2023-06-28T14:46:55Z) - Image Reconstruction for Accelerated MR Scan with Faster Fourier
Convolutional Neural Networks [87.87578529398019]
Partial scan is a common approach to accelerate Magnetic Resonance Imaging (MRI) data acquisition in both 2D and 3D settings.
We propose a novel convolutional operator called Faster Fourier Convolution (FasterFC) to replace the two consecutive convolution operations.
A 2D accelerated MRI method, FasterFC-End-to-End-VarNet, which uses FasterFC to improve the sensitivity maps and reconstruction quality.
A 3D accelerated MRI method called FasterFC-based Single-to-group Network (FAS-Net) that utilizes a single-to-group algorithm to guide k-space domain reconstruction
arXiv Detail & Related papers (2023-06-05T13:53:57Z) - Experimental implementation of the optical fractional Fourier transform
in the time-frequency domain [0.0]
We present the experimental realization of the fractional Fourier transform in the time-frequency domain using an atomic quantum-optical memory system.
We have verified the FrFT by analyses of chroncyclic Wigner functions measured via a shot-noise limited homodyne detector.
arXiv Detail & Related papers (2023-03-23T14:39:52Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Fourier Disentangled Space-Time Attention for Aerial Video Recognition [54.80846279175762]
We present an algorithm, Fourier Activity Recognition (FAR), for UAV video activity recognition.
Our formulation uses a novel Fourier object disentanglement method to innately separate out the human agent from the background.
We have evaluated our approach on multiple UAV datasets including UAV Human RGB, UAV Human Night, Drone Action, and NEC Drone.
arXiv Detail & Related papers (2022-03-21T01:24:53Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
We propose to estimate the gradient of sign function in the Fourier frequency domain using the combination of sine functions for training BNNs.
The experiments on several benchmark datasets and neural architectures illustrate that the binary network learned using our method achieves the state-of-the-art accuracy.
arXiv Detail & Related papers (2021-03-01T08:25:26Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.