F2former: When Fractional Fourier Meets Deep Wiener Deconvolution and Selective Frequency Transformer for Image Deblurring
- URL: http://arxiv.org/abs/2409.02056v1
- Date: Tue, 3 Sep 2024 17:05:12 GMT
- Title: F2former: When Fractional Fourier Meets Deep Wiener Deconvolution and Selective Frequency Transformer for Image Deblurring
- Authors: Subhajit Paul, Sahil Kumawat, Ashutosh Gupta, Deepak Mishra,
- Abstract summary: We propose a novel approach based on the Fractional Fourier Transform (FRFT), a unified spatial-frequency representation.
We show that the performance of our proposed method is superior to other state-of-the-art (SOTA) approaches.
- Score: 8.296475046681696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in image deblurring techniques focuses mainly on operating in both frequency and spatial domains using the Fourier transform (FT) properties. However, their performance is limited due to the dependency of FT on stationary signals and its lack of capability to extract spatial-frequency properties. In this paper, we propose a novel approach based on the Fractional Fourier Transform (FRFT), a unified spatial-frequency representation leveraging both spatial and frequency components simultaneously, making it ideal for processing non-stationary signals like images. Specifically, we introduce a Fractional Fourier Transformer (F2former), where we combine the classical fractional Fourier based Wiener deconvolution (F2WD) as well as a multi-branch encoder-decoder transformer based on a new fractional frequency aware transformer block (F2TB). We design F2TB consisting of a fractional frequency aware self-attention (F2SA) to estimate element-wise product attention based on important frequency components and a novel feed-forward network based on frequency division multiplexing (FM-FFN) to refine high and low frequency features separately for efficient latent clear image restoration. Experimental results for the cases of both motion deblurring as well as defocus deblurring show that the performance of our proposed method is superior to other state-of-the-art (SOTA) approaches.
Related papers
- Neural Fourier Modelling: A Highly Compact Approach to Time-Series Analysis [9.969451740838418]
We introduce Neural Fourier Modelling (NFM), a compact yet powerful solution for time-series analysis.
NFM is grounded in two key properties of the Fourier transform (FT): (i) the ability to model finite-length time series as functions in the Fourier domain, and (ii) the capacity for data manipulation within the Fourier domain.
NFM achieves state-of-the-art performance on a wide range of tasks, including challenging time-series scenarios with previously unseen sampling rates at test time.
arXiv Detail & Related papers (2024-10-07T02:39:55Z) - FourierMamba: Fourier Learning Integration with State Space Models for Image Deraining [71.46369218331215]
Image deraining aims to remove rain streaks from rainy images and restore clear backgrounds.
We propose a new framework termed FourierMamba, which performs image deraining with Mamba in the Fourier space.
arXiv Detail & Related papers (2024-05-29T18:58:59Z) - Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
This paper aims to address a common challenge in deep learning-based image transformation methods, such as image enhancement and super-resolution.
We introduce a novel and simple Frequency Distribution Loss (FDL) for computing distribution distance within the frequency domain.
Our method is empirically proven effective as a training constraint due to the thoughtful utilization of global information in the frequency domain.
arXiv Detail & Related papers (2024-02-28T09:27:41Z) - Experimental implementation of the optical fractional Fourier transform
in the time-frequency domain [0.0]
We present the experimental realization of the fractional Fourier transform in the time-frequency domain using an atomic quantum-optical memory system.
We have verified the FrFT by analyses of chroncyclic Wigner functions measured via a shot-noise limited homodyne detector.
arXiv Detail & Related papers (2023-03-23T14:39:52Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Efficient Frequency Domain-based Transformers for High-Quality Image
Deblurring [39.720032882926176]
We present an effective and efficient method that explores the properties of Transformers in the frequency domain for high-quality image deblurring.
We formulate the proposed FSAS and DFFN into an asymmetrical network based on an encoder and decoder architecture.
arXiv Detail & Related papers (2022-11-22T13:08:03Z) - Deep Fourier Up-Sampling [100.59885545206744]
Up-sampling in the Fourier domain is more challenging as it does not follow such a local property.
We propose a theoretically sound Deep Fourier Up-Sampling (FourierUp) to solve these issues.
arXiv Detail & Related papers (2022-10-11T06:17:31Z) - Adaptive Frequency Learning in Two-branch Face Forgery Detection [66.91715092251258]
We propose Adaptively learn Frequency information in the two-branch Detection framework, dubbed AFD.
We liberate our network from the fixed frequency transforms, and achieve better performance with our data- and task-dependent transform layers.
arXiv Detail & Related papers (2022-03-27T14:25:52Z) - Fourier Disentangled Space-Time Attention for Aerial Video Recognition [54.80846279175762]
We present an algorithm, Fourier Activity Recognition (FAR), for UAV video activity recognition.
Our formulation uses a novel Fourier object disentanglement method to innately separate out the human agent from the background.
We have evaluated our approach on multiple UAV datasets including UAV Human RGB, UAV Human Night, Drone Action, and NEC Drone.
arXiv Detail & Related papers (2022-03-21T01:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.