論文の概要: Client Selection in Federated Learning with Data Heterogeneity and Network Latencies
- arxiv url: http://arxiv.org/abs/2504.01921v1
- Date: Wed, 02 Apr 2025 17:31:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:24:47.827917
- Title: Client Selection in Federated Learning with Data Heterogeneity and Network Latencies
- Title(参考訳): データ不均一性とネットワーク遅延を考慮したフェデレーション学習におけるクライアント選択
- Authors: Harsh Vardhan, Xiaofan Yu, Tajana Rosing, Arya Mazumdar,
- Abstract要約: Federated Learning(FL)は、複数のクライアントがプライベートデータに基づいてローカルトレーニングを行う分散機械学習パラダイムである。
本稿では,両不均一性を扱う理論的に最適なクライアント選択方式を2つ提案する。
- 参考スコア(独自算出の注目度): 19.161254709653914
- License:
- Abstract: Federated learning (FL) is a distributed machine learning paradigm where multiple clients conduct local training based on their private data, then the updated models are sent to a central server for global aggregation. The practical convergence of FL is challenged by multiple factors, with the primary hurdle being the heterogeneity among clients. This heterogeneity manifests as data heterogeneity concerning local data distribution and latency heterogeneity during model transmission to the server. While prior research has introduced various efficient client selection methods to alleviate the negative impacts of either of these heterogeneities individually, efficient methods to handle real-world settings where both these heterogeneities exist simultaneously do not exist. In this paper, we propose two novel theoretically optimal client selection schemes that can handle both these heterogeneities. Our methods involve solving simple optimization problems every round obtained by minimizing the theoretical runtime to convergence. Empirical evaluations on 9 datasets with non-iid data distributions, 2 practical delay distributions, and non-convex neural network models demonstrate that our algorithms are at least competitive to and at most 20 times better than best existing baselines.
- Abstract(参考訳): Federated Learning(FL)は、複数のクライアントがプライベートデータに基づいてローカルトレーニングを行う分散機械学習パラダイムである。
FLの現実的な収束は、クライアント間の不均一性の主要なハードルとして、複数の要因によって挑戦されている。
この不均一性は、サーバへのモデル送信中のローカルデータの分散と遅延の不均一性に関するデータ不均一性として現れる。
従来の研究では、これらの不均一性のいずれかの負の影響を個別に緩和するために、様々な効率的なクライアント選択手法が導入されたが、両不均一性が同時に存在しない実世界の設定を扱うための効率的な方法が存在しない。
本稿では、これらの不均一性の両方を扱える理論的に最適なクライアント選択方式を2つ提案する。
提案手法は,理論的ランタイムを最小化して得られる各ラウンド毎の単純な最適化問題を解くことを含む。
非イドデータ分布と2つの実用的な遅延分布、および非凸ニューラルネットワークモデルを持つ9つのデータセットに対する実証的な評価は、我々のアルゴリズムが既存のベースラインに対して少なくとも20倍の競争力を持つことを示す。
関連論文リスト
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
フェデレートラーニング(FL)は、様々なクライアントからローカルに最適化されたモデルと、統一されたグローバルモデルを組み合わせる。
FLは、性能劣化、収束の遅さ、グローバルモデルの堅牢性低下など、重大な課題に直面している。
これらの問題を効果的に解決するために、革新的なデュアルストラテジーアプローチを導入する。
論文 参考訳(メタデータ) (2024-12-05T18:42:29Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Prototype Helps Federated Learning: Towards Faster Convergence [38.517903009319994]
Federated Learning(FL)は、複数のクライアントが協力して、生データを交換することなく、共有モデルをトレーニングする分散機械学習技術である。
本稿では,従来のフェデレーション学習プロセスの最後のグローバルイテレーションにわずかな変更を加えるだけで,推論性能を向上する,プロトタイプベースのフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-22T04:06:29Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Robust Convergence in Federated Learning through Label-wise Clustering [6.693651193181458]
非IIDデータセットとローカルクライアントの不均一環境は、フェデレートラーニング(FL)における主要な課題であると見なされる
地理的に異質なローカルクライアント間のトレーサビリティを保証する新しいラベルワイドクラスタリングアルゴリズムを提案する。
提案手法は,他のFLアルゴリズムと比較して,高速でロバストな収束を示す。
論文 参考訳(メタデータ) (2021-12-28T18:13:09Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。