Is Less Really More? Fake News Detection with Limited Information
- URL: http://arxiv.org/abs/2504.01922v2
- Date: Mon, 28 Apr 2025 23:18:16 GMT
- Title: Is Less Really More? Fake News Detection with Limited Information
- Authors: Zhaoyang Cao, John Nguyen, Reza Zafarani,
- Abstract summary: We propose a framework called SLIM Systematically-selected Limited Information for fake news detection.<n>SLIM leverages limited information to achieve performance in fake news detection comparable to that of state-of-the-art obtained using the full text.
- Score: 5.548744345836467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The threat that online fake news and misinformation pose to democracy, justice, public confidence, and especially to vulnerable populations, has led to a sharp increase in the need for fake news detection and intervention. Whether multi-modal or pure text-based, most fake news detection methods depend on textual analysis of entire articles. However, these fake news detection methods come with certain limitations. For instance, fake news detection methods that rely on full text can be computationally inefficient, demand large amounts of training data to achieve competitive accuracy, and may lack robustness across different datasets. This is because fake news datasets have strong variations in terms of the level and types of information they provide; where some can include large paragraphs of text with images and metadata, others can be a few short sentences. Perhaps if one could only use minimal information to detect fake news, fake news detection methods could become more robust and resilient to the lack of information. We aim to overcome these limitations by detecting fake news using systematically selected, limited information that is both effective and capable of delivering robust, promising performance. We propose a framework called SLIM Systematically-selected Limited Information) for fake news detection. In SLIM, we quantify the amount of information by introducing information-theoretic measures. SLIM leverages limited information to achieve performance in fake news detection comparable to that of state-of-the-art obtained using the full text. Furthermore, by combining various types of limited information, SLIM can perform even better while significantly reducing the quantity of information required for training compared to state-of-the-art language model-based fake news detection techniques.
Related papers
- Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
We study the interplay between machine-(paraphrased) real news, machine-generated fake news, human-written fake news, and human-written real news.
Our experiments reveal an interesting pattern that detectors trained exclusively on human-written articles can indeed perform well at detecting machine-generated fake news, but not vice versa.
arXiv Detail & Related papers (2023-11-02T08:39:45Z) - fakenewsbr: A Fake News Detection Platform for Brazilian Portuguese [0.6775616141339018]
This paper presents a comprehensive study on detecting fake news in Brazilian Portuguese.
We propose a machine learning-based approach that leverages natural language processing techniques, including TF-IDF and Word2Vec.
We develop a user-friendly web platform, fakenewsbr.com, to facilitate the verification of news articles' veracity.
arXiv Detail & Related papers (2023-09-20T04:10:03Z) - FNDaaS: Content-agnostic Detection of Fake News sites [2.1456348289599134]
We propose Fake News Detection-as-a Service (FND), which considers new and unstudied features such as network and structural characteristics per news website.<n>FND can achieve an AUC score of up to 0.967 on past sites, and up to 77-92% on newly-flagged ones.
arXiv Detail & Related papers (2022-12-13T11:17:32Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverse is a new feature based on multilingual evidence that can be used for fake news detection.
The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed.
arXiv Detail & Related papers (2022-11-25T18:24:17Z) - A Multi-Policy Framework for Deep Learning-Based Fake News Detection [0.31498833540989407]
This work introduces Multi-Policy Statement Checker (MPSC), a framework that automates fake news detection.
MPSC uses deep learning techniques to analyze a statement itself and its related news articles, predicting whether it is seemingly credible or suspicious.
arXiv Detail & Related papers (2022-06-01T21:25:21Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
We propose a novel framework for generating training examples informed by the known styles and strategies of human-authored propaganda.
Specifically, we perform self-critical sequence training guided by natural language inference to ensure the validity of the generated articles.
Our experimental results show that fake news detectors trained on PropaNews are better at detecting human-written disinformation by 3.62 - 7.69% F1 score on two public datasets.
arXiv Detail & Related papers (2022-03-10T14:24:19Z) - User Preference-aware Fake News Detection [61.86175081368782]
Existing fake news detection algorithms focus on mining news content for deceptive signals.
We propose a new framework, UPFD, which simultaneously captures various signals from user preferences by joint content and graph modeling.
arXiv Detail & Related papers (2021-04-25T21:19:24Z) - Connecting the Dots Between Fact Verification and Fake News Detection [21.564628184287173]
We propose a simple yet effective approach to connect the dots between fact verification and fake news detection.
Our approach makes use of the recent success of fact verification models and enables zero-shot fake news detection.
arXiv Detail & Related papers (2020-10-11T09:28:52Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
This research investigates the effects of an Explainable AI assistant embedded in news review platforms for combating the propagation of fake news.
We design a news reviewing and sharing interface, create a dataset of news stories, and train four interpretable fake news detection algorithms.
For a deeper understanding of Explainable AI systems, we discuss interactions between user engagement, mental model, trust, and performance measures in the process of explaining.
arXiv Detail & Related papers (2020-07-24T05:42:29Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
Social media has greatly enabled people to participate in online activities at an unprecedented rate.
This unrestricted access also exacerbates the spread of misinformation and fake news online which might cause confusion and chaos unless being detected early for its mitigation.
We jointly leverage the limited amount of clean data along with weak signals from social engagements to train deep neural networks in a meta-learning framework to estimate the quality of different weak instances.
Experiments on realworld datasets demonstrate that the proposed framework outperforms state-of-the-art baselines for early detection of fake news without using any user engagements at prediction time.
arXiv Detail & Related papers (2020-04-03T18:26:33Z) - Weak Supervision for Fake News Detection via Reinforcement Learning [34.448503443582396]
We propose a weakly-supervised fake news detection framework, i.e., WeFEND.
The proposed framework consists of three main components: the annotator, the reinforced selector and the fake news detector.
We tested the proposed framework on a large collection of news articles published via WeChat official accounts and associated user reports.
arXiv Detail & Related papers (2019-12-28T21:20:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.