論文の概要: From Text to Graph: Leveraging Graph Neural Networks for Enhanced Explainability in NLP
- arxiv url: http://arxiv.org/abs/2504.02064v1
- Date: Wed, 02 Apr 2025 18:55:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:58:30.697161
- Title: From Text to Graph: Leveraging Graph Neural Networks for Enhanced Explainability in NLP
- Title(参考訳): テキストからグラフへ:NLPの説明可能性を高めるグラフニューラルネットワークを活用する
- Authors: Fabio Yáñez-Romero, Andrés Montoyo, Armando Suárez, Yoan Gutiérrez, Ruslan Mitkov,
- Abstract要約: 本研究では,自然言語処理タスクにおける説明可能性を実現するための新しい手法を提案する。
自動的に文をグラフに変換し、ノードや関係を通じて意味を維持する。
実験は、与えられた分類のためのテキスト構造の中で最も重要なコンポーネントを決定するための有望な結果をもたらした。
- 参考スコア(独自算出の注目度): 3.864700176441583
- License:
- Abstract: Researchers have relegated natural language processing tasks to Transformer-type models, particularly generative models, because these models exhibit high versatility when performing generation and classification tasks. As the size of these models increases, they achieve outstanding results. Given their widespread use, many explainability techniques are developed based on these models. However, this process becomes computationally expensive due to the large size of the models. Additionally, transformers interpret input information through tokens that fragment input words into sequences lacking inherent semantic meaning, complicating the explanation of the model from the very beginning. This study proposes a novel methodology to achieve explainability in natural language processing tasks by automatically converting sentences into graphs and maintaining semantics through nodes and relations that express fundamental linguistic concepts. It also allows the subsequent exploitation of this knowledge in subsequent tasks, making it possible to obtain trends and understand how the model associates the different elements inside the text with the explained task. The experiments delivered promising results in determining the most critical components within the text structure for a given classification.
- Abstract(参考訳): 研究者は、自然言語処理タスクをトランスフォーマー型モデル、特に生成モデルに還元した。
これらのモデルのサイズが大きくなるにつれて、優れた結果が得られる。
広く使われているため、これらのモデルに基づいて多くの説明可能性技術が開発されている。
しかし、このプロセスは、モデルのサイズが大きいため、計算的に高価になる。
さらに、トランスフォーマーは入力ワードを固有の意味を欠いたシーケンスに断片化するトークンを通じて入力情報を解釈し、モデルの説明を最初から複雑にする。
本研究では, 自然言語処理タスクにおいて, 文を自動的にグラフに変換し, 基本言語概念を表現したノードや関係を通して意味性を維持することによって, 説明可能性を実現する手法を提案する。
さらに、この知識をその後のタスクで活用することで、トレンドを取得し、モデルがテキスト内の異なる要素と説明されたタスクをどう関連づけるかを理解することができる。
実験は、与えられた分類のためのテキスト構造の中で最も重要なコンポーネントを決定するための有望な結果をもたらした。
関連論文リスト
- Survey on Abstractive Text Summarization: Dataset, Models, and Metrics [0.8184895397419141]
トランスフォーマーモデルは、それらの注意機構、一般的な知識に基づく事前訓練、下流タスクの微調整によって区別される。
本研究は,テキスト要約モデルにおける技術の現状を,抽象的要約アプローチに特化して検討する。
論文 参考訳(メタデータ) (2024-12-22T21:18:40Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - Topic Aware Probing: From Sentence Length Prediction to Idiom
Identification how reliant are Neural Language Models on Topic? [1.816169926868157]
本研究では,トランスフォーマーベースモデル (BERT と RoBERTa の) の性能が,英語における探索課題に与える影響について検討する。
その結果,トランスフォーマーを用いたモデルでは,中間層におけるトピック情報と非トピック情報をエンコードしていることがわかった。
他の標準探索タスクにおけるこれらのモデルの性能分析は、トピック情報に比較的敏感なタスクもまた、これらのモデルにとって比較的難しいタスクであることを示している。
論文 参考訳(メタデータ) (2024-03-04T13:10:08Z) - Physics of Language Models: Part 1, Learning Hierarchical Language Structures [51.68385617116854]
トランスフォーマーベースの言語モデルは効率的だが複雑であり、内部動作を理解することは大きな課題である。
本稿では,長文を生成可能な階層規則を生成する合成CFGのファミリーを紹介する。
我々は、GPTのような生成モデルがこのCFG言語を正確に学習し、それに基づいて文を生成することを実証する。
論文 参考訳(メタデータ) (2023-05-23T04:28:16Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
汎用知識グラフ(KG)を用いた会話意味解析の課題を,数百万のエンティティと数千のリレーショナルタイプで検討する。
ユーザ発話を実行可能な論理形式にインタラクティブにマッピングできるモデルに焦点を当てる。
論文 参考訳(メタデータ) (2023-05-04T16:04:41Z) - Explainability of Text Processing and Retrieval Methods: A Critical
Survey [1.5320737596132752]
本稿では,自然言語処理と情報検索手法の説明可能性と解釈可能性について概説する。
具体的には、単語埋め込み、シーケンスモデリング、アテンションモジュール、トランスフォーマー、BERT、文書ランキングの説明に応用されたアプローチについて調査する。
論文 参考訳(メタデータ) (2022-12-14T09:25:49Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Hierarchical Interpretation of Neural Text Classification [31.95426448656938]
本稿では,Hintと呼ばれる階層型インタプリタ型ニューラルテキスト分類器を提案する。
レビューデータセットとニュースデータセットの両方の実験結果から,提案手法は既存の最先端テキスト分類器と同等のテキスト分類結果が得られることが示された。
論文 参考訳(メタデータ) (2022-02-20T11:15:03Z) - Unnatural Language Inference [48.45003475966808]
我々は、RoBERTaやBARTのような最先端のNLIモデルは、ランダムに並べ替えられた単語の例に不変であり、時にはよりよく機能することさえあります。
我々の発見は、自然言語理解モデルと、その進捗を測定するために使われるタスクが、本当に人間のような構文理解を必要とするという考えに疑問を投げかけている。
論文 参考訳(メタデータ) (2020-12-30T20:40:48Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。