Evolving Security in LLMs: A Study of Jailbreak Attacks and Defenses
- URL: http://arxiv.org/abs/2504.02080v1
- Date: Wed, 02 Apr 2025 19:33:07 GMT
- Title: Evolving Security in LLMs: A Study of Jailbreak Attacks and Defenses
- Authors: Zhengchun Shang, Wenlan Wei,
- Abstract summary: Large Language Models (LLMs) are increasingly popular, powering a wide range of applications.<n>Their widespread use has sparked concerns, especially through jailbreak attacks that bypass safety measures to produce harmful content.<n>We present a comprehensive security analysis of large language models (LLMs), addressing critical research questions on the evolution and determinants of model safety.
- Score: 0.5261718469769449
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) are increasingly popular, powering a wide range of applications. Their widespread use has sparked concerns, especially through jailbreak attacks that bypass safety measures to produce harmful content. In this paper, we present a comprehensive security analysis of large language models (LLMs), addressing critical research questions on the evolution and determinants of model safety. Specifically, we begin by identifying the most effective techniques for detecting jailbreak attacks. Next, we investigate whether newer versions of LLMs offer improved security compared to their predecessors. We also assess the impact of model size on overall security and explore the potential benefits of integrating multiple defense strategies to enhance model robustness. Our study evaluates both open-source models (e.g., LLaMA and Mistral) and closed-source systems (e.g., GPT-4) by employing four state-of-the-art attack techniques and assessing the efficacy of three new defensive approaches.
Related papers
- SafeMLRM: Demystifying Safety in Multi-modal Large Reasoning Models [50.34706204154244]
Acquiring reasoning capabilities catastrophically degrades inherited safety alignment.
Certain scenarios suffer 25 times higher attack rates.
Despite tight reasoning-answer safety coupling, MLRMs demonstrate nascent self-correction.
arXiv Detail & Related papers (2025-04-09T06:53:23Z) - How Jailbreak Defenses Work and Ensemble? A Mechanistic Investigation [39.44000290664494]
Jailbreak attacks, where harmful prompts bypass generative models' built-in safety, raise serious concerns about model vulnerability.
This paper systematically examines jailbreak defenses by reframing the standard generation task as a binary classification problem.
We identify two key defense mechanisms: safety shift, which increases refusal rates across all queries, and harmfulness discrimination, which improves the model's ability to distinguish between harmful and benign inputs.
arXiv Detail & Related papers (2025-02-20T12:07:40Z) - Safety at Scale: A Comprehensive Survey of Large Model Safety [298.05093528230753]
We present a comprehensive taxonomy of safety threats to large models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats.<n>We identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices.
arXiv Detail & Related papers (2025-02-02T05:14:22Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
Despite training-time safety alignment, Multimodal Large Language Models (MLLMs) remain vulnerable to jailbreak attacks.<n>We propose Immune, an inference-time defense framework that leverages a safe reward model through controlled decoding to defend against jailbreak attacks.
arXiv Detail & Related papers (2024-11-27T19:00:10Z) - Jailbreak Attacks and Defenses against Multimodal Generative Models: A Survey [50.031628043029244]
Multimodal generative models are susceptible to jailbreak attacks, which can bypass built-in safety mechanisms and induce the production of potentially harmful content.
We present a detailed taxonomy of attack methods, defense mechanisms, and evaluation frameworks specific to multimodal generative models.
arXiv Detail & Related papers (2024-11-14T07:51:51Z) - PathSeeker: Exploring LLM Security Vulnerabilities with a Reinforcement Learning-Based Jailbreak Approach [25.31933913962953]
Large Language Models (LLMs) have gained widespread use, raising concerns about their security.
We introduce PathSeeker, a novel black-box jailbreak method, which is inspired by the game of rats escaping a maze.
Our method outperforms five state-of-the-art attack techniques when tested across 13 commercial and open-source LLMs.
arXiv Detail & Related papers (2024-09-21T15:36:26Z) - LLMs can be Dangerous Reasoners: Analyzing-based Jailbreak Attack on Large Language Models [20.154877919740322]
Existing jailbreak methods suffer from two main limitations: reliance on complicated prompt engineering and iterative optimization.<n>We propose an efficient jailbreak attack method, Analyzing-based Jailbreak (ABJ), which leverages the advanced reasoning capability of LLMs to autonomously generate harmful content.
arXiv Detail & Related papers (2024-07-23T06:14:41Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding and reasoning tasks.
The vulnerability of LVLMs is relatively underexplored, posing potential security risks in daily usage.
In this paper, we provide a comprehensive review of the various forms of existing LVLM attacks.
arXiv Detail & Related papers (2024-07-10T06:57:58Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
Large Language Models (LLMs) have gained widespread adoption across various domains, including chatbots and auto-task completion agents.
These models are susceptible to safety vulnerabilities such as jailbreaking, prompt injection, and privacy leakage attacks.
This study investigates the impact of these modifications on LLM safety, a critical consideration for building reliable and secure AI systems.
arXiv Detail & Related papers (2024-04-05T20:31:45Z) - A Comprehensive Study of Jailbreak Attack versus Defense for Large Language Models [20.40158210837289]
We investigate nine attack techniques and seven defense techniques applied across three distinct language models: Vicuna, LLama, and GPT-3.5 Turbo.
Our findings reveal that existing white-box attacks underperform compared to universal techniques and that including special tokens in the input significantly affects the likelihood of successful attacks.
arXiv Detail & Related papers (2024-02-21T01:26:39Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
Large Language Models (LLMs) play an increasingly pivotal role in natural language processing applications.
This paper presents Safety and Over-Defensiveness Evaluation (SODE) benchmark.
arXiv Detail & Related papers (2023-12-30T17:37:06Z) - A Comprehensive Survey of Attack Techniques, Implementation, and Mitigation Strategies in Large Language Models [0.0]
This article explores two attack categories: attacks on models themselves and attacks on model applications.
The former requires expertise, access to model data, and significant implementation time.
The latter is more accessible to attackers and has seen increased attention.
arXiv Detail & Related papers (2023-12-18T07:07:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.