論文の概要: PolyG: Effective and Efficient GraphRAG with Adaptive Graph Traversal
- arxiv url: http://arxiv.org/abs/2504.02112v1
- Date: Wed, 02 Apr 2025 20:19:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:55:54.930290
- Title: PolyG: Effective and Efficient GraphRAG with Adaptive Graph Traversal
- Title(参考訳): PolyG: 適応グラフトラバース付きグラフRAG
- Authors: Renjie Liu, Haitian Jiang, Xiao Yan, Bo Tang, Jinyang Li,
- Abstract要約: GraphRAGは、大きな言語モデル(LLM)を拡張して、外部知識グラフから関連する事実を検索することで、ユーザの質問に対する質の高い回答を生成する。
そこで本研究では,全4クラス分類に基づいて質問を分類し,各質問に対して適切なグラフトラバース戦略を適応的に選択することを提案する。
我々のシステムPolyGは基本的にGraphRAGのクエリプランナであり、統一されたインターフェースと実行エンジンで多様な質問を処理できます。
- 参考スコア(独自算出の注目度): 9.46894426075469
- License:
- Abstract: GraphRAG enhances large language models (LLMs) to generate quality answers for user questions by retrieving related facts from external knowledge graphs. Existing GraphRAG methods adopt a fixed graph traversal strategy for fact retrieval but we observe that user questions come in different types and require different graph traversal strategies. As such, existing GraphRAG methods are limited in effectiveness (i.e., quality of the generated answers) and/or efficiency (i.e., response time or the number of used tokens). In this paper, we propose to classify the questions according to a complete four-class taxonomy and adaptively select the appropriate graph traversal strategy for each type of questions. Our system PolyG is essentially a query planner for GraphRAG and can handle diverse questions with an unified interface and execution engine. Compared with SOTA GraphRAG methods, PolyG achieves an overall win rate of 75% on generation quality and a speedup up to 4x on response time.
- Abstract(参考訳): GraphRAGは、大きな言語モデル(LLM)を拡張して、外部知識グラフから関連する事実を検索することで、ユーザの質問に対する質の高い回答を生成する。
既存のGraphRAG手法では, 事実検索に固定グラフトラバース戦略を採用しているが, ユーザの質問は異なるタイプのもので, 異なるグラフトラバース戦略を必要とする。
このように、既存のGraphRAGメソッドは有効性(すなわち、生成された回答の品質)と効率性(すなわち、応答時間または使用されるトークンの数)に制限されている。
本稿では,完全な4クラス分類に従って質問を分類し,各質問に対して適切なグラフトラバース戦略を適応的に選択することを提案する。
我々のシステムPolyGは基本的にGraphRAGのクエリプランナであり、統一されたインターフェースと実行エンジンで多様な質問を処理できます。
SOTA GraphRAG法と比較して、PolyGは生成品質で75%の勝利率、応答時間で4倍のスピードアップを達成する。
関連論文リスト
- RAG vs. GraphRAG: A Systematic Evaluation and Key Insights [42.31801859160484]
我々は,テキストベースベンチマークを用いて,検索型拡張生成(RAG)とグラフRAGを体系的に評価する。
本結果は,RAGとGraphRAGの異なる課題と評価の観点から,それぞれ異なる強みを浮き彫りにしている。
論文 参考訳(メタデータ) (2025-02-17T02:36:30Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - Retrieval-Augmented Generation with Graphs (GraphRAG) [84.29507404866257]
Retrieval-augmented Generation (RAG) は、追加情報を取得することによって下流タスクの実行を向上させる強力な技術である。
グラフは、その固有の「エッジで接続されたノード」の性質により、巨大な異種情報と関係情報を符号化する。
従来のRAGとは異なり、多種多様な形式とドメイン固有の関係知識のようなグラフ構造化データのユニークさは、異なるドメインでGraphRAGを設計する際、ユニークで重要な課題を生じさせる。
論文 参考訳(メタデータ) (2024-12-31T06:59:35Z) - Graph Retrieval-Augmented Generation: A Survey [28.979898837538958]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の課題に再トレーニングを必要とせずに対処することに成功した。
本稿では,GraphRAGの方法論について概観する。
Graph-Based Indexing、Graph-Guided Retrieval、Graph-Enhanced Generationを含むGraphRAGワークフローを形式化する。
論文 参考訳(メタデータ) (2024-08-15T12:20:24Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
現実のテキストグラフを対象とするフレキシブルな問合せフレームワークを開発した。
一般のテキストグラフに対する最初の検索拡張生成(RAG)手法を提案する。
G-Retrieverは、このタスクをSteiner Tree最適化問題として定式化し、グラフ上でRAGを実行する。
論文 参考訳(メタデータ) (2024-02-12T13:13:04Z) - GSINA: Improving Subgraph Extraction for Graph Invariant Learning via
Graph Sinkhorn Attention [52.67633391931959]
グラフ不変学習(GIL)は,グラフデータとそのラベル間の不変性を発見するための効果的な手法である。
グラフシンクホーン注意機構(GSINA)を提案する。
GSINAは、制御可能な空間性と柔らかさを持つ有意義で微分可能な不変部分グラフを得ることができる。
論文 参考訳(メタデータ) (2024-02-11T12:57:16Z) - Graph-augmented Learning to Rank for Querying Large-scale Knowledge
Graph [34.774049199809426]
情報検索に基づく知識グラフ質問応答(KGQA)は,大規模知識グラフから回答を取得して回答することを目的としている。
まず,検索したKSGを,新しいサブグラフ分割アルゴリズムを用いて,より小さなKSGに分割する。
次に、ランク付けモデルから上位のKSGを選択するためのグラフ拡張学習を提案する。
論文 参考訳(メタデータ) (2021-11-20T08:27:37Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
我々は、新しい自己教師型学習フレームワーク、グラフ情報支援ノード機能exTraction (GIANT)を提案する。
GIANT は eXtreme Multi-label Classification (XMC) 形式を利用しており、これはグラフ情報に基づいた言語モデルの微調整に不可欠である。
我々は,Open Graph Benchmarkデータセット上での標準GNNパイプラインよりもGIANTの方が優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-29T19:55:12Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
グラフ識別(GI)は、グラフ学習において長い間研究されており、特定の応用において不可欠である。
本稿では,逆グラフ識別(Inverse Graph Identification, IGI)と呼ばれる新しい問題を定義する。
本稿では,グラフアテンションネットワーク(GAT)を用いたノードレベルのメッセージパッシング処理を,GIのプロトコルの下でシンプルかつ効果的に行う方法を提案する。
論文 参考訳(メタデータ) (2020-07-12T12:06:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。