Violation of Expectation via Metacognitive Prompting Reduces Theory of
Mind Prediction Error in Large Language Models
- URL: http://arxiv.org/abs/2310.06983v1
- Date: Tue, 10 Oct 2023 20:05:13 GMT
- Title: Violation of Expectation via Metacognitive Prompting Reduces Theory of
Mind Prediction Error in Large Language Models
- Authors: Courtland Leer, Vincent Trost, Vineeth Voruganti
- Abstract summary: Large Language Models (LLMs) exhibit a compelling level of proficiency in Theory of Mind (ToM) tasks.
This ability to impute unobservable mental states to others is vital to human social cognition and may prove equally important in principal-agent relations between humans and Artificial Intelligences (AIs)
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent research shows that Large Language Models (LLMs) exhibit a compelling
level of proficiency in Theory of Mind (ToM) tasks. This ability to impute
unobservable mental states to others is vital to human social cognition and may
prove equally important in principal-agent relations between individual humans
and Artificial Intelligences (AIs). In this paper, we explore how a mechanism
studied in developmental psychology known as Violation of Expectation (VoE) can
be implemented to reduce errors in LLM prediction about users by leveraging
emergent ToM affordances. And we introduce a \textit{metacognitive prompting}
framework to apply VoE in the context of an AI tutor. By storing and retrieving
facts derived in cases where LLM expectation about the user was violated, we
find that LLMs are able to learn about users in ways that echo theories of
human learning. Finally, we discuss latent hazards and augmentative
opportunities associated with modeling user psychology and propose ways to
mitigate risk along with possible directions for future inquiry.
Related papers
- Causality for Large Language Models [37.10970529459278]
Large language models (LLMs) with billions or trillions of parameters are trained on vast datasets, achieving unprecedented success across a series of language tasks.
Recent research highlights that LLMs function as causal parrots, capable of reciting causal knowledge without truly understanding or applying it.
This survey aims to explore how causality can enhance LLMs at every stage of their lifecycle.
arXiv Detail & Related papers (2024-10-20T07:22:23Z) - Modulating Language Model Experiences through Frictions [56.17593192325438]
Over-consumption of language model outputs risks propagating unchecked errors in the short-term and damaging human capabilities in the long-term.
We propose selective frictions for language model experiences, inspired by behavioral science interventions, to dampen misuse.
arXiv Detail & Related papers (2024-06-24T16:31:11Z) - What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models [50.97705264224828]
We propose Counterfactual Inception, a novel method that implants counterfactual thinking into Large Multi-modal Models.
We aim for the models to engage with and generate responses that span a wider contextual scene understanding.
Comprehensive analyses across various LMMs, including both open-source and proprietary models, corroborate that counterfactual thinking significantly reduces hallucination.
arXiv Detail & Related papers (2024-03-20T11:27:20Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
Large Language Models (LLMs) have catalyzed transformative advances across a spectrum of natural language processing tasks.
We propose an innovative textitmetacognitive approach, dubbed textbfCLEAR, to equip LLMs with capabilities for self-aware error identification and correction.
arXiv Detail & Related papers (2024-03-08T19:18:53Z) - Should We Fear Large Language Models? A Structural Analysis of the Human
Reasoning System for Elucidating LLM Capabilities and Risks Through the Lens
of Heidegger's Philosophy [0.0]
This study investigates the capabilities and risks of Large Language Models (LLMs)
It uses the innovative parallels between the statistical patterns of word relationships within LLMs and Martin Heidegger's concepts of "ready-to-hand" and "present-at-hand"
Our findings reveal that while LLMs possess the capability for Direct Explicative Reasoning and Pseudo Rational Reasoning, they fall short in authentic rational reasoning and have no creative reasoning capabilities.
arXiv Detail & Related papers (2024-03-05T19:40:53Z) - LLM-driven Imitation of Subrational Behavior : Illusion or Reality? [3.2365468114603937]
Existing work highlights the ability of Large Language Models to address complex reasoning tasks and mimic human communication.
We propose to investigate the use of LLMs to generate synthetic human demonstrations, which are then used to learn subrational agent policies.
We experimentally evaluate the ability of our framework to model sub-rationality through four simple scenarios.
arXiv Detail & Related papers (2024-02-13T19:46:39Z) - Theory of Mind abilities of Large Language Models in Human-Robot
Interaction : An Illusion? [18.770522926093786]
Large Language Models have shown exceptional generative abilities in various natural language and generation tasks.
We study a special application of ToM abilities that has higher stakes and possibly irreversible consequences.
We focus on the task of Perceived Behavior Recognition, where a robot employs a Large Language Model (LLM) to assess the robot's generated behavior in a manner similar to human observer.
arXiv Detail & Related papers (2024-01-10T18:09:36Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Democratizing Reasoning Ability: Tailored Learning from Large Language
Model [97.4921006089966]
We propose a tailored learning approach to distill such reasoning ability to smaller LMs.
We exploit the potential of LLM as a reasoning teacher by building an interactive multi-round learning paradigm.
To exploit the reasoning potential of the smaller LM, we propose self-reflection learning to motivate the student to learn from self-made mistakes.
arXiv Detail & Related papers (2023-10-20T07:50:10Z) - Deception Abilities Emerged in Large Language Models [0.0]
Large language models (LLMs) are currently at the forefront of intertwining artificial intelligence (AI) systems with human communication and everyday life.
This study reveals that such strategies emerged in state-of-the-art LLMs, such as GPT-4, but were non-existent in earlier LLMs.
We conduct a series of experiments showing that state-of-the-art LLMs are able to understand and induce false beliefs in other agents.
arXiv Detail & Related papers (2023-07-31T09:27:01Z) - Learning Theory of Mind via Dynamic Traits Attribution [59.9781556714202]
We propose a new neural ToM architecture that learns to generate a latent trait vector of an actor from the past trajectories.
This trait vector then multiplicatively modulates the prediction mechanism via a fast weights' scheme in the prediction neural network.
We empirically show that the fast weights provide a good inductive bias to model the character traits of agents and hence improves mindreading ability.
arXiv Detail & Related papers (2022-04-17T11:21:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.