HSOD-BIT-V2: A New Challenging Benchmarkfor Hyperspectral Salient Object Detection
- URL: http://arxiv.org/abs/2503.13906v1
- Date: Tue, 18 Mar 2025 05:09:42 GMT
- Title: HSOD-BIT-V2: A New Challenging Benchmarkfor Hyperspectral Salient Object Detection
- Authors: Yuhao Qiu, Shuyan Bai, Tingfa Xu, Peifu Liu, Haolin Qin, Jianan Li,
- Abstract summary: We introduce HSOD-BIT-V2, the largest and most challenging HSOD benchmark dataset to date.<n>We propose Hyper-HRNet, a high-resolution HSOD network.<n>It effectively extracts, integrates, and preserves effective spectral information while reducing dimensionality by capturing the self-similar spectral features.<n>It conveys fine details and precisely locates object contours by incorporating comprehensive global information and detailed object saliency representations.
- Score: 12.1018751772293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Salient Object Detection (SOD) is crucial in computer vision, yet RGB-based methods face limitations in challenging scenes, such as small objects and similar color features. Hyperspectral images provide a promising solution for more accurate Hyperspectral Salient Object Detection (HSOD) by abundant spectral information, while HSOD methods are hindered by the lack of extensive and available datasets. In this context, we introduce HSOD-BIT-V2, the largest and most challenging HSOD benchmark dataset to date. Five distinct challenges focusing on small objects and foreground-background similarity are designed to emphasize spectral advantages and real-world complexity. To tackle these challenges, we propose Hyper-HRNet, a high-resolution HSOD network. Hyper-HRNet effectively extracts, integrates, and preserves effective spectral information while reducing dimensionality by capturing the self-similar spectral features. Additionally, it conveys fine details and precisely locates object contours by incorporating comprehensive global information and detailed object saliency representations. Experimental analysis demonstrates that Hyper-HRNet outperforms existing models, especially in challenging scenarios.
Related papers
- Hyperspectral Remote Sensing Images Salient Object Detection: The First Benchmark Dataset and Baseline [14.081609886645555]
We introduce the first HRSI-SOD dataset, termed HRSSD, which includes 704 hyperspectral images and 5327 pixel-level annotated salient objects.
The HRSSD dataset poses substantial challenges for salient object detection algorithms due to large scale variation, diverse foreground-background relations, and multi-salient objects.
We propose an innovative and efficient baseline model for HRSI-SOD, termed the Deep Spectral Saliency Network (DSSN)
arXiv Detail & Related papers (2025-04-03T09:12:42Z) - Hyperspectral Adapter for Object Tracking based on Hyperspectral Video [18.77789707539318]
A new hyperspectral object tracking method, hyperspectral adapter for tracking (HyA-T), is proposed in this work.
The proposed methods extract spectral information directly from the hyperspectral images, which prevent the loss of the spectral information.
The HyA-T achieves state-of-the-art performance on all the datasets.
arXiv Detail & Related papers (2025-03-28T07:31:48Z) - HyperSIGMA: Hyperspectral Intelligence Comprehension Foundation Model [88.13261547704444]
Hyper SIGMA is a vision transformer-based foundation model for HSI interpretation.
It integrates spatial and spectral features using a specially designed spectral enhancement module.
It shows significant advantages in scalability, robustness, cross-modal transferring capability, and real-world applicability.
arXiv Detail & Related papers (2024-06-17T13:22:58Z) - DMSSN: Distilled Mixed Spectral-Spatial Network for Hyperspectral Salient Object Detection [12.823338405434244]
Hyperspectral salient object detection (HSOD) has exhibited remarkable promise across various applications.
Previous methods insufficiently harness the inherent distinctive attributes of hyperspectral images (HSIs) during the feature extraction process.
We propose Distilled Mixed Spectral-Spatial Network (DMSSN), comprising a Distilled Spectral-Spatial Transformer (MSST)
We have created a large-scale HSOD dataset, HSOD-BIT, to tackle the issue of data scarcity in this field.
arXiv Detail & Related papers (2024-03-31T14:04:57Z) - Object Detection in Hyperspectral Image via Unified Spectral-Spatial
Feature Aggregation [55.9217962930169]
We present S2ADet, an object detector that harnesses the rich spectral and spatial complementary information inherent in hyperspectral images.
S2ADet surpasses existing state-of-the-art methods, achieving robust and reliable results.
arXiv Detail & Related papers (2023-06-14T09:01:50Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Scene-Aware
Ambidextrous Bin Picking via Physics-based Metaverse Synthesis [72.85526892440251]
We introduce MetaGraspNet, a large-scale photo-realistic bin picking dataset constructed via physics-based metaverse synthesis.
The proposed dataset contains 217k RGBD images across 82 different article types, with full annotations for object detection, amodal perception, keypoint detection, manipulation order and ambidextrous grasp labels for a parallel-jaw and vacuum gripper.
We also provide a real dataset consisting of over 2.3k fully annotated high-quality RGBD images, divided into 5 levels of difficulties and an unseen object set to evaluate different object and layout properties.
arXiv Detail & Related papers (2022-08-08T08:15:34Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Spatial-Spectral Feedback Network for Super-Resolution of Hyperspectral
Imagery [11.76638109321532]
High-dimensional and complex spectral patterns in hyperspectral image make it difficult to explore spatial information and spectral information among bands simultaneously.
The number of available hyperspectral training samples is extremely small, which can easily lead to overfitting when training a deep neural network.
We propose a novel Spatial-Spectral Feedback Network (SSFN) to refine low-level representations among local spectral bands with high-level information from global spectral bands.
arXiv Detail & Related papers (2021-03-07T13:28:48Z) - Hyperspectral Image Super-resolution via Deep Spatio-spectral
Convolutional Neural Networks [32.10057746890683]
We propose a simple and efficient architecture for deep convolutional neural networks to fuse a low-resolution hyperspectral image and a high-resolution multispectral image.
The proposed network architecture achieves best performance compared with recent state-of-the-art hyperspectral image super-resolution approaches.
arXiv Detail & Related papers (2020-05-29T05:56:50Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.