論文の概要: MonoGS++: Fast and Accurate Monocular RGB Gaussian SLAM
- arxiv url: http://arxiv.org/abs/2504.02437v1
- Date: Thu, 03 Apr 2025 09:51:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 19:57:49.31103
- Title: MonoGS++: Fast and Accurate Monocular RGB Gaussian SLAM
- Title(参考訳): MonoGS++: 高速かつ高精度な単分子RGBガウスSLAM
- Authors: Renwu Li, Wenjing Ke, Dong Li, Lu Tian, Emad Barsoum,
- Abstract要約: 高速かつ高精度なSLAM法であるMonoGS++を提案する。
当社のアプローチでは,ハードウェア依存を低減し,RGB入力のみを必要としており,オンラインビジュアルオドメトリー(VO)を利用して,疎点雲をリアルタイムに生成する。
提案手法は,従来のMonoGSに比べて,毎秒5.57倍のフレーム(fps)向上を実現した。
- 参考スコア(独自算出の注目度): 9.37281948308712
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present MonoGS++, a novel fast and accurate Simultaneous Localization and Mapping (SLAM) method that leverages 3D Gaussian representations and operates solely on RGB inputs. While previous 3D Gaussian Splatting (GS)-based methods largely depended on depth sensors, our approach reduces the hardware dependency and only requires RGB input, leveraging online visual odometry (VO) to generate sparse point clouds in real-time. To reduce redundancy and enhance the quality of 3D scene reconstruction, we implemented a series of methodological enhancements in 3D Gaussian mapping. Firstly, we introduced dynamic 3D Gaussian insertion to avoid adding redundant Gaussians in previously well-reconstructed areas. Secondly, we introduced clarity-enhancing Gaussian densification module and planar regularization to handle texture-less areas and flat surfaces better. We achieved precise camera tracking results both on the synthetic Replica and real-world TUM-RGBD datasets, comparable to those of the state-of-the-art. Additionally, our method realized a significant 5.57x improvement in frames per second (fps) over the previous state-of-the-art, MonoGS.
- Abstract(参考訳): 提案するMonoGS++は,3次元ガウス表現を活用し,RGB入力のみで動作する,高速かつ高精度なSLAM法である。
従来の3D Gaussian Splatting(GS)ベースの手法は深度センサに大きく依存していたが,本手法ではハードウェア依存を低減し,RGB入力のみを必要とする。
冗長性の低減と3次元シーン再構成の品質向上を目的として,3次元ガウス写像の方法論的拡張を行った。
まず, 動的3次元ガウス挿入を導入し, 以前よく再構成された領域に冗長ガウスを付加しないようにした。
第2に,テクスチャレス領域と平面面をよりよく扱うために,明瞭度向上型ガウス密度モジュールと平面正規化を導入した。
我々は、合成Replicaと実世界のTUM-RGBDデータセットの両方で正確なカメラ追跡結果を達成した。
さらに,従来のMonoGSに比べて,フレーム/秒(fps)が5.57倍向上した。
関連論文リスト
- HI-SLAM2: Geometry-Aware Gaussian SLAM for Fast Monocular Scene Reconstruction [38.47566815670662]
HI-SLAM2は、RGB入力のみを用いて高速かつ正確な単眼シーン再構築を実現する幾何学的ガウスSLAMシステムである。
既存のニューラルSLAM法よりも大幅に改善され,RGB-D法を上回り,再現性もレンダリング性も向上した。
論文 参考訳(メタデータ) (2024-11-27T01:39:21Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
本稿では,ガウスカーネルを線形カーネルに置き換えて,よりシャープで高精度な結果を得る3Dリニアスティング(DLS)を提案する。
3DLSは、最先端の忠実さと正確さを示し、ベースライン3DGSよりも30%のFPS改善を実現している。
論文 参考訳(メタデータ) (2024-11-19T11:59:54Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - Splat-SLAM: Globally Optimized RGB-only SLAM with 3D Gaussians [87.48403838439391]
3D Splattingは、RGBのみの高密度SLAMの幾何学と外観の強力な表現として登場した。
本稿では,高密度な3次元ガウス写像表現を持つRGBのみのSLAMシステムを提案する。
Replica、TUM-RGBD、ScanNetのデータセットに対する実験は、グローバルに最適化された3Dガウスの有効性を示している。
論文 参考訳(メタデータ) (2024-05-26T12:26:54Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - Gaussian Splatting SLAM [16.3858380078553]
単分子SLAMにおける3次元ガウス散乱の最初の応用について述べる。
我々の方法は3fpsで動作し、正確な追跡、マッピング、高品質なレンダリングに必要な表現を統一する。
ライブカメラから高忠実度で連続的に3Dシーンを再構築するためには、いくつかの革新が必要である。
論文 参考訳(メタデータ) (2023-12-11T18:19:04Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。