An Overview of Josephson Junctions Based QPUs
- URL: http://arxiv.org/abs/2504.02500v1
- Date: Thu, 03 Apr 2025 11:26:52 GMT
- Title: An Overview of Josephson Junctions Based QPUs
- Authors: Omid Mohebi, Alireza Hesam Mohseni,
- Abstract summary: Quantum processing units based on superconducting Josephson junctions promise significant advances in quantum computing.<n>However, they face critical challenges such as decoherence, scalability limitations, and error correction overhead.<n>This paper investigates these issues by exploring both fundamental quantum phenomena and practical engineering challenges.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum processing units (QPUs) based on superconducting Josephson junctions promise significant advances in quantum computing. However, they face critical challenges. Decoherence, scalability limitations, and error correction overhead hinder practical, fault-tolerant implementations. This paper investigates these issues by exploring both fundamental quantum phenomena and practical engineering challenges. We analyze key quantum mechanical principles such as superposition, entanglement, and decoherence that govern the behavior of superconducting qubits. We also discuss quantum tunneling, Cooper pair formation, and the operational mechanics of Josephson junctions in detail. Additionally, we present a comparative analysis with alternative architectures, including ion trap and photonic systems. This comparison highlights the unique advantages and trade-offs of Josephson junction-based QPUs. Our findings emphasize the critical role of material innovations and optimized control techniques. These advances are essential for mitigating noise and decoherence and for realizing robust, scalable quantum computing.
Related papers
- Dynamical Casimir effect in superconducting cavities: from photon generation to universal quantum gates [49.1574468325115]
Chapter explores various aspects of the Dynamical Casimir Effect (DCE) and its implications in the context of circuit quantum electrodynamics (cQED)
arXiv Detail & Related papers (2025-04-15T16:28:00Z) - Tight-Binding Energy-Phase Calculation for Topological Josephson Junction Nanowire Architecture [0.0]
The noisy quantum environment is a larger threat than many may realize.<n>The noisy intermediate scale quantum (NISQ) era can be viewed as an inflection point for the enterprise of QC where decoherence could stagnate progress if left unaddressed.<n>One tactic for handling decoherence is to address the problem from a hardware level by implementing topological materials into the design.
arXiv Detail & Related papers (2025-03-20T20:57:52Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum artificial vision for defect detection in manufacturing [0.0]
We consider several algorithms for quantum computer vision using Noisy Intermediate-Scale Quantum (NISQ) devices.
We benchmark them for a real problem against their classical counterparts.
This is the first implementation of quantum computer vision systems for a problem of industrial relevance in a manufacturing production line.
arXiv Detail & Related papers (2022-08-09T18:30:23Z) - Quantum Error Correction: Noise-adapted Techniques and Applications [2.122752621320654]
Theory of quantum error correction provides a scheme by which the effects of such noise on quantum states can be mitigated.
We focus on recent theoretical advances in the domain of noise-adapted QEC, and highlight some key open questions.
We conclude with a review of the theory of quantum fault tolerance which gives a quantitative estimate of the physical noise threshold below which error-resilient quantum computation is possible.
arXiv Detail & Related papers (2022-07-31T05:23:50Z) - Learning Quantum Systems [0.0]
Quantum technologies hold the promise to revolutionise our society with ground-breaking applications in secure communication, high-performance computing and ultra-precise sensing.
One of the main features in scaling up quantum technologies is that the complexity of quantum systems scales exponentially with their size.
This poses severe challenges in the efficient calibration, benchmarking and validation of quantum states and their dynamical control.
arXiv Detail & Related papers (2022-07-01T09:47:26Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - Quantum criticality using a superconducting quantum processor [0.0]
We probe the critical properties of the one-dimensional quantum Ising model on a programmable superconducting quantum chip via a Kibble-Zurek process.
In addition, we investigate how the improvement of NISQ computers (more qubits, less noise) will consolidate the computation of those universal physical properties.
arXiv Detail & Related papers (2021-09-22T18:00:00Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.