Data-Driven Object Tracking: Integrating Modular Neural Networks into a Kalman Framework
- URL: http://arxiv.org/abs/2504.02519v1
- Date: Thu, 03 Apr 2025 12:13:38 GMT
- Title: Data-Driven Object Tracking: Integrating Modular Neural Networks into a Kalman Framework
- Authors: Christian Alexander Holz, Christian Bader, Markus Enzweiler, Matthias Drüppel,
- Abstract summary: We introduce three Neural Network (NN) models that address key challenges in Multi-Object Tracking (MOT)<n>All three networks are designed to be run in a realtime, embedded environment.<n>Our evaluation, conducted on the public KITTI tracking dataset, demonstrates significant improvements in tracking performance.
- Score: 2.1369549137353805
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents novel Machine Learning (ML) methodologies for Multi-Object Tracking (MOT), specifically designed to meet the increasing complexity and precision demands of Advanced Driver Assistance Systems (ADAS). We introduce three Neural Network (NN) models that address key challenges in MOT: (i) the Single-Prediction Network (SPENT) for trajectory prediction, (ii) the Single-Association Network (SANT) for mapping individual Sensor Object (SO) to existing tracks, and (iii) the Multi-Association Network (MANTa) for associating multiple SOs to multiple tracks. These models are seamlessly integrated into a traditional Kalman Filter (KF) framework, maintaining the system's modularity by replacing relevant components without disrupting the overall architecture. Importantly, all three networks are designed to be run in a realtime, embedded environment. Each network contains less than 50k trainable parameters. Our evaluation, conducted on the public KITTI tracking dataset, demonstrates significant improvements in tracking performance. SPENT reduces the Root Mean Square Error (RMSE) by 50% compared to a standard KF, while SANT and MANTa achieve up to 95% accuracy in sensor object-to-track assignments. These results underscore the effectiveness of incorporating task-specific NNs into traditional tracking systems, boosting performance and robustness while preserving modularity, maintainability, and interpretability.
Related papers
- SynCL: A Synergistic Training Strategy with Instance-Aware Contrastive Learning for End-to-End Multi-Camera 3D Tracking [34.90147791481045]
SynCL is a novel plug-and-play synergistic training strategy designed to co-facilitate multi-task learning for detection and tracking.<n>We show that SynCL consistently delivers improvements when integrated with the training stage of various query-based 3D MOT trackers.<n>Without additional inference costs, SynCL improves the state-of-the-art PF-Track method by $+3.9%$ AMOTA and $+2.0%$ NDS on the nuScenes dataset.
arXiv Detail & Related papers (2024-11-11T08:18:49Z) - MetaSSC: Enhancing 3D Semantic Scene Completion for Autonomous Driving through Meta-Learning and Long-sequence Modeling [3.139165705827712]
We introduce MetaSSC, a novel meta-learning-based framework for semantic scene completion (SSC)<n>Our approach begins with a voxel-based semantic segmentation (SS) pretraining task, aimed at exploring the semantics and geometry of incomplete regions.<n>Using simulated cooperative perception datasets, we supervise the perception training of a single vehicle using aggregated sensor data.<n>This meta-knowledge is then adapted to the target domain through a dual-phase training strategy, enabling efficient deployment.
arXiv Detail & Related papers (2024-11-06T05:11:25Z) - A Point-Based Approach to Efficient LiDAR Multi-Task Perception [49.91741677556553]
PAttFormer is an efficient multi-task architecture for joint semantic segmentation and object detection in point clouds.
Unlike other LiDAR-based multi-task architectures, our proposed PAttFormer does not require separate feature encoders for task-specific point cloud representations.
Our evaluations show substantial gains from multi-task learning, improving LiDAR semantic segmentation by +1.7% in mIou and 3D object detection by +1.7% in mAP.
arXiv Detail & Related papers (2024-04-19T11:24:34Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Neural Attentive Circuits [93.95502541529115]
We introduce a general purpose, yet modular neural architecture called Neural Attentive Circuits (NACs)
NACs learn the parameterization and a sparse connectivity of neural modules without using domain knowledge.
NACs achieve an 8x speedup at inference time while losing less than 3% performance.
arXiv Detail & Related papers (2022-10-14T18:00:07Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
We propose a novel solution named TransSTAM, which leverages Transformer to model both the appearance features of each object and the spatial-temporal relationships among objects.
The proposed method is evaluated on multiple public benchmarks including MOT16, MOT17, and MOT20, and it achieves a clear performance improvement in both IDF1 and HOTA.
arXiv Detail & Related papers (2022-05-31T01:19:18Z) - MOTS R-CNN: Cosine-margin-triplet loss for multi-object tracking [2.8935588665357077]
One of the central tasks of multi-object tracking involves learning a distance metric consistent with the semantic similarities of objects.
In this paper, we propose cosine-margin-contrastive (CMC) and cosine-margin-triplet (CMT) loss by reformulating both contrastive and triplet loss functions.
We then propose the MOTS R-CNN framework for joint multi-object tracking and segmentation, particularly targeted at improving the tracking performance.
arXiv Detail & Related papers (2021-02-06T05:03:29Z) - End-to-End Object Detection with Fully Convolutional Network [71.56728221604158]
We introduce a Prediction-aware One-To-One (POTO) label assignment for classification to enable end-to-end detection.
A simple 3D Max Filtering (3DMF) is proposed to utilize the multi-scale features and improve the discriminability of convolutions in the local region.
Our end-to-end framework achieves competitive performance against many state-of-the-art detectors with NMS on COCO and CrowdHuman datasets.
arXiv Detail & Related papers (2020-12-07T09:14:55Z) - Modular Multi Target Tracking Using LSTM Networks [0.0]
This paper proposes a model free end-to-end approach for airborne target tracking system using sensor measurements.
The proposed modular blocks can be independently trained and used in multitude of tracking applications.
arXiv Detail & Related papers (2020-11-16T15:58:49Z) - A Unified Object Motion and Affinity Model for Online Multi-Object
Tracking [127.5229859255719]
We propose a novel MOT framework that unifies object motion and affinity model into a single network, named UMA.
UMA integrates single object tracking and metric learning into a unified triplet network by means of multi-task learning.
We equip our model with a task-specific attention module, which is used to boost task-aware feature learning.
arXiv Detail & Related papers (2020-03-25T09:36:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.