LexPam: Legal Procedure Awareness-Guided Mathematical Reasoning
- URL: http://arxiv.org/abs/2504.02590v1
- Date: Thu, 03 Apr 2025 13:54:53 GMT
- Title: LexPam: Legal Procedure Awareness-Guided Mathematical Reasoning
- Authors: Kepu Zhang, Guofu Xie, Weijie Yu, Mingyue Xu, Xu Tang, Yaxin Li, Jun Xu,
- Abstract summary: Existing legal LLMs can perform general judicial question answering, but their legal mathematical reasoning capabilities have not been trained.<n>There is currently a lack of legal mathematical reasoning datasets to help validate and enhance LLMs' reasoning abilities in legal contexts.<n>We introduce LexPam, a reinforcement learning algorithm guided by legal procedural awareness to train LLMs, enhancing their mathematical reasoning abilities in legal scenarios.
- Score: 12.90492832643565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The legal mathematical reasoning ability of LLMs is crucial when applying them to real-world scenarios, as it directly affects the credibility of the LLM. While existing legal LLMs can perform general judicial question answering, their legal mathematical reasoning capabilities have not been trained. Open-domain reasoning models, though able to generate detailed calculation steps, do not follow the reasoning logic required for legal scenarios. Additionally, there is currently a lack of legal mathematical reasoning datasets to help validate and enhance LLMs' reasoning abilities in legal contexts. To address these issues, we propose the first Chinese legal Mathematical Reasoning Dataset, LexNum, which includes three common legal mathematical reasoning scenarios: economic compensation, work injury compensation, and traffic accident compensation. Based on LexNum, we tested the performance of existing legal LLMs and reasoning LLMs, and introduced LexPam, a reinforcement learning algorithm guided by legal procedural awareness to train LLMs, enhancing their mathematical reasoning abilities in legal scenarios. Experiments on tasks in the three legal scenarios show that the performance of existing legal LLMs and reasoning models in legal mathematical reasoning tasks is unsatisfactory. LexPam can enhance the LLM's ability in these tasks.
Related papers
- Artificial Intelligence and Legal Analysis: Implications for Legal Education and the Profession [0.0]
This article reports the results of a study examining the ability of legal and nonlegal Large Language Models to perform legal analysis.<n>The results show that LLMs can conduct basic IRAC analysis, but are limited by brief responses lacking detail, an inability to commit to answers, false confidence, and hallucinations.
arXiv Detail & Related papers (2025-02-04T19:50:48Z) - LegalAgentBench: Evaluating LLM Agents in Legal Domain [53.70993264644004]
LegalAgentBench is a benchmark specifically designed to evaluate LLM Agents in the Chinese legal domain.<n>LegalAgentBench includes 17 corpora from real-world legal scenarios and provides 37 tools for interacting with external knowledge.
arXiv Detail & Related papers (2024-12-23T04:02:46Z) - RuleArena: A Benchmark for Rule-Guided Reasoning with LLMs in Real-World Scenarios [58.90106984375913]
RuleArena is a novel and challenging benchmark designed to evaluate the ability of large language models (LLMs) to follow complex, real-world rules in reasoning.<n> Covering three practical domains -- airline baggage fees, NBA transactions, and tax regulations -- RuleArena assesses LLMs' proficiency in handling intricate natural language instructions.
arXiv Detail & Related papers (2024-12-12T06:08:46Z) - Can Large Language Models Grasp Legal Theories? Enhance Legal Reasoning with Insights from Multi-Agent Collaboration [27.047809869136458]
Large Language Models (LLMs) could struggle to fully understand legal theories and perform legal reasoning tasks.
We introduce a challenging task (confusing charge prediction) to better evaluate LLMs' understanding of legal theories and reasoning capabilities.
We also propose a novel framework: Multi-Agent framework for improving complex Legal Reasoning capability.
arXiv Detail & Related papers (2024-10-03T14:15:00Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Law is a specialized LLM tailored for addressing diverse legal queries related to Chinese laws.
We meticulously construct a dataset in the Chinese legal domain, encompassing over 1 million queries.
InternLM-Law achieves the highest average performance on LawBench, outperforming state-of-the-art models, including GPT-4, on 13 out of 20 subtasks.
arXiv Detail & Related papers (2024-06-21T06:19:03Z) - Can LLMs Reason with Rules? Logic Scaffolding for Stress-Testing and Improving LLMs [87.34281749422756]
Large language models (LLMs) have achieved impressive human-like performance across various reasoning tasks.
However, their mastery of underlying inferential rules still falls short of human capabilities.
We propose a logic scaffolding inferential rule generation framework, to construct an inferential rule base, ULogic.
arXiv Detail & Related papers (2024-02-18T03:38:51Z) - BLT: Can Large Language Models Handle Basic Legal Text? [44.89873147675516]
GPT-4 and Claude perform poorly on basic legal text handling.
Poor performance on benchmark casts into doubt their reliability as-is for legal practice.
Fine-tuning on training set brings even a small model to near-perfect performance.
arXiv Detail & Related papers (2023-11-16T09:09:22Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
Large language models (LLMs) have demonstrated great potential for domain-specific applications.
Recent disputes over GPT-4's law evaluation raise questions concerning their performance in real-world legal tasks.
We design practical baseline solutions based on LLMs and test on the task of legal judgment prediction.
arXiv Detail & Related papers (2023-10-18T07:38:04Z) - LAiW: A Chinese Legal Large Language Models Benchmark [17.66376880475554]
General and legal domain LLMs have demonstrated strong performance in various tasks of LegalAI.
We are the first to build the Chinese legal LLMs benchmark LAiW, based on the logic of legal practice.
arXiv Detail & Related papers (2023-10-09T11:19:55Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - LawBench: Benchmarking Legal Knowledge of Large Language Models [35.2812008533622]
Large language models (LLMs) have demonstrated strong capabilities in various aspects.
It is unclear how much legal knowledge they possess and whether they can reliably perform legal-related tasks.
LawBench has been meticulously crafted to have precise assessment of the LLMs' legal capabilities from three cognitive levels.
arXiv Detail & Related papers (2023-09-28T09:35:59Z) - Large Language Models as Tax Attorneys: A Case Study in Legal
Capabilities Emergence [5.07013500385659]
This paper explores Large Language Models' (LLMs) capabilities in applying tax law.
Our experiments demonstrate emerging legal understanding capabilities, with improved performance in each subsequent OpenAI model release.
Findings indicate that LLMs, particularly when combined with prompting enhancements and the correct legal texts, can perform at high levels of accuracy but not yet at expert tax lawyer levels.
arXiv Detail & Related papers (2023-06-12T12:40:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.