State-Space Model Inspired Multiple-Input Multiple-Output Spiking Neurons
- URL: http://arxiv.org/abs/2504.02591v1
- Date: Thu, 03 Apr 2025 13:55:11 GMT
- Title: State-Space Model Inspired Multiple-Input Multiple-Output Spiking Neurons
- Authors: Sanja Karilanova, Subhrakanti Dey, Ayça Özçelikkale,
- Abstract summary: In spiking neural networks (SNNs), the main unit of information processing is the neuron with an internal state.<n>We propose a general multiple-input multiple-output (MIMO) spiking neuron model.<n>We show that for SNNs with a small number of neurons with large internal state spaces, significant performance gains may be obtained by increasing the number of output channels of a neuron.
- Score: 3.2443914909457594
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In spiking neural networks (SNNs), the main unit of information processing is the neuron with an internal state. The internal state generates an output spike based on its component associated with the membrane potential. This spike is then communicated to other neurons in the network. Here, we propose a general multiple-input multiple-output (MIMO) spiking neuron model that goes beyond this traditional single-input single-output (SISO) model in the SNN literature. Our proposed framework is based on interpreting the neurons as state-space models (SSMs) with linear state evolutions and non-linear spiking activation functions. We illustrate the trade-offs among various parameters of the proposed SSM-inspired neuron model, such as the number of hidden neuron states, the number of input and output channels, including single-input multiple-output (SIMO) and multiple-input single-output (MISO) models. We show that for SNNs with a small number of neurons with large internal state spaces, significant performance gains may be obtained by increasing the number of output channels of a neuron. In particular, a network with spiking neurons with multiple-output channels may achieve the same level of accuracy with the baseline with the continuous-valued communications on the same reference network architecture.
Related papers
- Delay Neural Networks (DeNN) for exploiting temporal information in event-based datasets [49.1574468325115]
Delay Neural Networks (DeNN) are designed to explicitly use exact continuous temporal information of spikes in both forward and backward passes.<n>Good performances are obtained, especially for datasets where temporal information is important.
arXiv Detail & Related papers (2025-01-10T14:58:15Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.<n> embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.<n> split computing - where an SNN is partitioned across two devices - is a promising solution.<n>This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - P-SpikeSSM: Harnessing Probabilistic Spiking State Space Models for Long-Range Dependency Tasks [1.9775291915550175]
Spiking neural networks (SNNs) are posited as a computationally efficient and biologically plausible alternative to conventional neural architectures.<n>We develop a scalable probabilistic spiking learning framework for long-range dependency tasks.<n>Our models attain state-of-the-art performance among SNN models across diverse long-range dependency tasks.
arXiv Detail & Related papers (2024-06-05T04:23:11Z) - A survey on learning models of spiking neural membrane systems and spiking neural networks [0.0]
Spiking neural networks (SNN) are a biologically inspired model of neural networks with certain brain-like properties.
In SNN, communication between neurons takes place through the spikes and spike trains.
SNPS can be considered a branch of SNN based more on the principles of formal automata.
arXiv Detail & Related papers (2024-03-27T14:26:41Z) - Deep Pulse-Coupled Neural Networks [31.65350290424234]
Neural Networks (SNNs) capture the information processing mechanism of the brain by taking advantage of neurons.
In this work, we leverage a more biologically plausible neural model with complex dynamics, i.e., a pulse-coupled neural network (PCNN)
We construct deep pulse-coupled neural networks (DPCNNs) by replacing commonly used LIF neurons in SNNs with PCNN neurons.
arXiv Detail & Related papers (2023-12-24T08:26:00Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Complex Dynamic Neurons Improved Spiking Transformer Network for
Efficient Automatic Speech Recognition [8.998797644039064]
The spiking neural network (SNN) using leaky-integrated-and-fire (LIF) neurons has been commonly used in automatic speech recognition (ASR) tasks.
Here we introduce four types of neuronal dynamics to post-process the sequential patterns generated from the spiking transformer.
We found that the DyTr-SNN could handle the non-toy automatic speech recognition task well, representing a lower phoneme error rate, lower computational cost, and higher robustness.
arXiv Detail & Related papers (2023-02-02T16:20:27Z) - Multi-compartment Neuron and Population Encoding Powered Spiking Neural Network for Deep Distributional Reinforcement Learning [6.0483672878162515]
In spiking neural networks (SNNs), spiking neurons serve as the fundamental information processing units.<n>In this paper, we propose a brain-inspired deep distributional reinforcement learning algorithm based on SNNs.
arXiv Detail & Related papers (2023-01-18T02:45:38Z) - The Mechanical Neural Network(MNN) -- A physical implementation of a
multilayer perceptron for education and hands-on experimentation [1.1802674324027231]
This model is used in education to give a hands on experience and allow students to experience the effect of changing the parameters of the network on the output.
The MNN can model real valued functions and logical operators including XOR.
arXiv Detail & Related papers (2022-07-15T14:05:44Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Flexible Transmitter Network [84.90891046882213]
Current neural networks are mostly built upon the MP model, which usually formulates the neuron as executing an activation function on the real-valued weighted aggregation of signals received from other neurons.
We propose the Flexible Transmitter (FT) model, a novel bio-plausible neuron model with flexible synaptic plasticity.
We present the Flexible Transmitter Network (FTNet), which is built on the most common fully-connected feed-forward architecture.
arXiv Detail & Related papers (2020-04-08T06:55:12Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.