Graphs are everywhere -- Psst! In Music Recommendation too
- URL: http://arxiv.org/abs/2504.02598v2
- Date: Fri, 04 Apr 2025 07:51:18 GMT
- Title: Graphs are everywhere -- Psst! In Music Recommendation too
- Authors: Bharani Jayakumar, Orkun Özoğlu,
- Abstract summary: Graphs play a crucial role in enhancing genre-based recommendations.<n>This study explores the efficacy of Graph Convolutional Networks (GCN), GraphSAGE, and Graph Transformer (GT) models in learning embeddings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, graphs have gained prominence across various domains, especially in recommendation systems. Within the realm of music recommendation, graphs play a crucial role in enhancing genre-based recommendations by integrating Mel-Frequency Cepstral Coefficients (MFCC) with advanced graph embeddings. This study explores the efficacy of Graph Convolutional Networks (GCN), GraphSAGE, and Graph Transformer (GT) models in learning embeddings that effectively capture intricate relationships between music items and genres represented within graph structures. Through comprehensive empirical evaluations on diverse real-world music datasets, our findings consistently demonstrate that these graph-based approaches outperform traditional methods that rely solely on MFCC features or collaborative filtering techniques. Specifically, the graph-enhanced models achieve notably higher accuracy in predicting genre-specific preferences and offering relevant music suggestions to users. These results underscore the effectiveness of utilizing graph embeddings to enrich feature representations and exploit latent associations within music data, thereby illustrating their potential to advance the capabilities of personalized and context-aware music recommendation systems. Keywords: graphs, recommendation systems, neural networks, MFCC
Related papers
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)<n>This framework provides a standardized setting to evaluate GNNs across diverse datasets.<n>We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - Towards Data-centric Machine Learning on Directed Graphs: a Survey [23.498557237805414]
We introduce a novel taxonomy for existing studies of directed graph learning.<n>We re-examine these methods from the data-centric perspective, with an emphasis on understanding and improving data representation.<n>We identify key opportunities and challenges within the field, offering insights that can guide future research and development in directed graph learning.
arXiv Detail & Related papers (2024-11-28T06:09:12Z) - RAGraph: A General Retrieval-Augmented Graph Learning Framework [35.25522856244149]
We introduce a novel framework called General Retrieval-Augmented Graph Learning (RAGraph)<n>RAGraph brings external graph data into the general graph foundation model to improve model generalization on unseen scenarios.<n>During inference, the RAGraph adeptly retrieves similar toy graphs based on key similarities in downstream tasks.
arXiv Detail & Related papers (2024-10-31T12:05:21Z) - Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
Graph learning models have been widely deployed in collaborative filtering (CF) based recommendation systems.
Due to the issue of data sparsity, the graph structure of the original input lacks potential positive preference edges.
We propose an Amplify Graph Learning framework based on Sparsity Completion (called AGL-SC)
arXiv Detail & Related papers (2024-06-27T08:26:20Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Contributions to Representation Learning with Graph Autoencoders and
Applications to Music Recommendation [1.2691047660244335]
Graph autoencoders (GAE) and variational graph autoencoders (VGAE) emerged as powerful groups of unsupervised node embedding methods.
At the beginning of this Ph.D. project, GAE and VGAE models were also suffering from key limitations, preventing them from being adopted in the industry.
We present several contributions to improve these models, with the general aim of facilitating their use to address industrial-level problems involving graph representations.
arXiv Detail & Related papers (2022-05-29T13:14:53Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Graph Learning based Recommender Systems: A Review [111.43249652335555]
Graph Learning based Recommender Systems (GLRS) employ advanced graph learning approaches to model users' preferences and intentions as well as items' characteristics for recommendations.
We provide a systematic review of GLRS, by discussing how they extract important knowledge from graph-based representations to improve the accuracy, reliability and explainability of the recommendations.
arXiv Detail & Related papers (2021-05-13T14:50:45Z) - Temporal Graph Networks for Deep Learning on Dynamic Graphs [4.5158585619109495]
We present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events.
Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient.
arXiv Detail & Related papers (2020-06-18T16:06:18Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.