HQViT: Hybrid Quantum Vision Transformer for Image Classification
- URL: http://arxiv.org/abs/2504.02730v1
- Date: Thu, 03 Apr 2025 16:13:34 GMT
- Title: HQViT: Hybrid Quantum Vision Transformer for Image Classification
- Authors: Hui Zhang, Qinglin Zhao, Mengchu Zhou, Li Feng,
- Abstract summary: We propose a Hybrid Quantum Vision Transformer (HQViT) to accelerate model training while enhancing model performance.<n>HQViT introduces whole-image processing with amplitude encoding to better preserve global image information without additional positional encoding.<n>Experiments across various computer vision datasets demonstrate that HQViT outperforms existing models, achieving a maximum improvement of up to $10.9%$ (on the MNIST 10-classification task) over the state of the art.
- Score: 48.72766405978677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer-based architectures have revolutionized the landscape of deep learning. In computer vision domain, Vision Transformer demonstrates remarkable performance on par with or even surpassing that of convolutional neural networks. However, the quadratic computational complexity of its self-attention mechanism poses challenges for classical computing, making model training with high-dimensional input data, e.g., images, particularly expensive. To address such limitations, we propose a Hybrid Quantum Vision Transformer (HQViT), that leverages the principles of quantum computing to accelerate model training while enhancing model performance. HQViT introduces whole-image processing with amplitude encoding to better preserve global image information without additional positional encoding. By leveraging quantum computation on the most critical steps and selectively handling other components in a classical way, we lower the cost of quantum resources for HQViT. The qubit requirement is minimized to $O(log_2N)$ and the number of parameterized quantum gates is only $O(log_2d)$, making it well-suited for Noisy Intermediate-Scale Quantum devices. By offloading the computationally intensive attention coefficient matrix calculation to the quantum framework, HQViT reduces the classical computational load by $O(T^2d)$. Extensive experiments across various computer vision datasets demonstrate that HQViT outperforms existing models, achieving a maximum improvement of up to $10.9\%$ (on the MNIST 10-classification task) over the state of the art. This work highlights the great potential to combine quantum and classical computing to cope with complex image classification tasks.
Related papers
- End-to-End Demonstration of Quantum Generative Adversarial Networks for Steel Microstructure Image Augmentation on a Trapped-Ion Quantum Computer [1.6459866832540102]
Generative adversarial networks (GANs) are a machine learning technique capable of producing high-quality synthetic images.
We integrate quantum computing with GANs to generate complex 5-channel electron backscatter diffraction (EBSD) images of two distinct microstructure phases of steel.
We find that the hybrid quantum-classical WGAN improves over classical Bernoulli GANs in 70% of samples.
arXiv Detail & Related papers (2025-04-11T17:55:58Z) - Hybrid Quantum-Classical Feature Extraction approach for Image Classification using Autoencoders and Quantum SVMs [0.0]
NISQ-era quantum computers have limitations, which include noise, scalability, read-in and read-out times, and gate operation times.
strategies should be devised to mitigate the impact that complex datasets can have on the overall efficiency of a quantum machine learning pipeline.
We apply a classical feature extraction method using a ResNet10-inspired convolutional autoencoder to both reduce the dimensionality of the dataset and extract meaningful features.
arXiv Detail & Related papers (2024-10-24T15:02:05Z) - Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
This research explores the integration of quantum computing with classical machine learning for image classification tasks.
We propose a hybrid quantum-classical approach that leverages the strengths of both paradigms.
The experimental results indicate that while the hybrid model demonstrates the feasibility of integrating quantum computing with classical techniques, the accuracy of the final model, trained on quantum outcomes, is currently lower than the classical model trained on compressed features.
arXiv Detail & Related papers (2024-08-05T22:16:27Z) - Variational Quantum Circuits Enhanced Generative Adversarial Network [5.209320054725053]
We propose a hybrid quantum-classical architecture for improving GAN (denoted as QC-GAN)
The QC-GAN consists of a quantum variational circuit together with a one-layer neural network, and the discriminator consists of a traditional neural network.
We have also demonstrated the superiority of QC-GAN over an alternative quantum GAN, namely pathGAN, which could hardly generate 16$times$16 or larger images.
arXiv Detail & Related papers (2024-02-02T03:59:35Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - A general-purpose single-photon-based quantum computing platform [36.56899230501635]
We report a first user-ready general-purpose quantum computing prototype based on single photons.
The device comprises a high-efficiency quantum-dot single-photon source feeding a universal linear optical network on a reconfigurable chip.
We report on a first heralded 3-photon entanglement generation, a key milestone toward measurement-based quantum computing.
arXiv Detail & Related papers (2023-06-01T16:35:55Z) - Quantum machine learning for image classification [39.58317527488534]
This research introduces two quantum machine learning models that leverage the principles of quantum mechanics for effective computations.
Our first model, a hybrid quantum neural network with parallel quantum circuits, enables the execution of computations even in the noisy intermediate-scale quantum era.
A second model introduces a hybrid quantum neural network with a Quanvolutional layer, reducing image resolution via a convolution process.
arXiv Detail & Related papers (2023-04-18T18:23:20Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.