CanonNet: Canonical Ordering and Curvature Learning for Point Cloud Analysis
- URL: http://arxiv.org/abs/2504.02763v1
- Date: Thu, 03 Apr 2025 16:58:57 GMT
- Title: CanonNet: Canonical Ordering and Curvature Learning for Point Cloud Analysis
- Authors: Benjy Friedmann, Michael Werman,
- Abstract summary: CanonNet is a lightweight neural network composed of two complementary components.<n>We present CanonNet, a preprocessing pipeline that creates a canonical point ordering and orientation.<n>We also present a geometric learning framework where networks learn from synthetic surfaces with precise curvature values.
- Score: 0.5919433278490629
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Point cloud processing poses two fundamental challenges: establishing consistent point ordering and effectively learning fine-grained geometric features. Current architectures rely on complex operations that limit expressivity while struggling to capture detailed surface geometry. We present CanonNet, a lightweight neural network composed of two complementary components: (1) a preprocessing pipeline that creates a canonical point ordering and orientation, and (2) a geometric learning framework where networks learn from synthetic surfaces with precise curvature values. This modular approach eliminates the need for complex transformation-invariant architectures while effectively capturing local geometric properties. Our experiments demonstrate state-of-the-art performance in curvature estimation and competitive results in geometric descriptor tasks with significantly fewer parameters (\textbf{100X}) than comparable methods. CanonNet's efficiency makes it particularly suitable for real-world applications where computational resources are limited, demonstrating that mathematical preprocessing can effectively complement neural architectures for point cloud analysis. The code for the project is publicly available \hyperlink{https://benjyfri.github.io/CanonNet/}{https://benjyfri.github.io/CanonNet/}.
Related papers
- Fast Point Cloud Geometry Compression with Context-based Residual Coding and INR-based Refinement [19.575833741231953]
We use the KNN method to determine the neighborhoods of raw surface points.
A conditional probability model is adaptive to local geometry, leading to significant rate reduction.
We incorporate an implicit neural representation into the refinement layer, allowing the decoder to sample points on the underlying surface at arbitrary densities.
arXiv Detail & Related papers (2024-08-06T05:24:06Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPoint is an unsupervised neural learning pipeline for achieving global free-boundary surface parameterization.
This work makes the first attempt to investigate neural point cloud parameterization that pursues both global mappings and free boundaries.
arXiv Detail & Related papers (2024-03-15T14:35:05Z) - GPr-Net: Geometric Prototypical Network for Point Cloud Few-Shot
Learning [2.4366811507669115]
GPr-Net is a lightweight and computationally efficient geometric network that captures the prototypical topology of point clouds.
We show that GPr-Net outperforms state-of-the-art methods in few-shot learning on point clouds.
arXiv Detail & Related papers (2023-04-12T17:32:18Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
Representation [65.4396959244269]
The paper tackles the challenge by designing a general framework to construct 3D learning architectures.
The proposed approach can be applied to general backbones like PointNet and DGCNN.
Experiments on ModelNet40, ShapeNet, and the real-world dataset ScanObjectNN, demonstrated that the method achieves a great trade-off between efficiency, rotation, and accuracy.
arXiv Detail & Related papers (2022-09-13T12:12:19Z) - Neural Convolutional Surfaces [59.172308741945336]
This work is concerned with a representation of shapes that disentangles fine, local and possibly repeating geometry, from global, coarse structures.
We show that this approach achieves better neural shape compression than the state of the art, as well as enabling manipulation and transfer of shape details.
arXiv Detail & Related papers (2022-04-05T15:40:11Z) - Refine-Net: Normal Refinement Neural Network for Noisy Point Clouds [36.414785147181995]
We propose a normal refinement network, called Refine-Net, to predict accurate normals for noisy point clouds.
Our network is designed to refine the initial normal of each point by extracting additional information from multiple feature representations.
arXiv Detail & Related papers (2022-03-23T16:18:51Z) - Spelunking the Deep: Guaranteed Queries for General Neural Implicit
Surfaces [35.438964954948574]
This work presents a new approach to perform queries directly on general neural implicit functions for a wide range of existing architectures.
Our key tool is the application of range analysis to neural networks, using automatic arithmetic rules to bound the output of a network over a region.
We use the resulting bounds to develop queries including ray casting, intersection testing, constructing spatial hierarchies, fast mesh extraction, closest-point evaluation.
arXiv Detail & Related papers (2022-02-05T00:37:08Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
We propose a novel framework called Squeeze Reasoning.
Instead of propagating information on the spatial map, we first learn to squeeze the input feature into a channel-wise global vector.
We show that our approach can be modularized as an end-to-end trained block and can be easily plugged into existing networks.
arXiv Detail & Related papers (2020-11-06T12:17:01Z) - Neural Subdivision [58.97214948753937]
This paper introduces Neural Subdivision, a novel framework for data-driven coarseto-fine geometry modeling.
We optimize for the same set of network weights across all local mesh patches, thus providing an architecture that is not constrained to a specific input mesh, fixed genus, or category.
We demonstrate that even when trained on a single high-resolution mesh our method generates reasonable subdivisions for novel shapes.
arXiv Detail & Related papers (2020-05-04T20:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.