A Survey of Large Language Models in Mental Health Disorder Detection on Social Media
- URL: http://arxiv.org/abs/2504.02800v2
- Date: Fri, 04 Apr 2025 02:07:59 GMT
- Title: A Survey of Large Language Models in Mental Health Disorder Detection on Social Media
- Authors: Zhuohan Ge, Nicole Hu, Darian Li, Yubo Wang, Shihao Qi, Yuming Xu, Han Shi, Jason Zhang,
- Abstract summary: This paper aims to explore the potential of Large Language Models (LLMs) for mental health problem detection on social media.<n>The paper focuses on the most common psychological disorders such as depression and anxiety but also incorporating psychotic disorders and externalizing disorders.
- Score: 6.494919397864379
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The detection and intervention of mental health issues represent a critical global research focus, and social media data has been recognized as an important resource for mental health research. However, how to utilize Large Language Models (LLMs) for mental health problem detection on social media poses significant challenges. Hence, this paper aims to explore the potential of LLM applications in social media data analysis, focusing not only on the most common psychological disorders such as depression and anxiety but also incorporating psychotic disorders and externalizing disorders, summarizing the application methods of LLM from different dimensions, such as text data analysis and detection of mental disorders, and revealing the major challenges and shortcomings of current research. In addition, the paper provides an overview of popular datasets, and evaluation metrics. The survey in this paper provides a comprehensive frame of reference for researchers in the field of mental health, while demonstrating the great potential of LLMs in mental health detection to facilitate the further application of LLMs in future mental health interventions.
Related papers
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.<n>Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.<n>Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - Mitigating Hallucinations Using Ensemble of Knowledge Graph and Vector Store in Large Language Models to Enhance Mental Health Support [0.0]
This research work delves into the manifestation of hallucination within Large Language Models (LLMs)
The primary objective is to discern effective strategies for curtailing hallucinatory occurrences.
arXiv Detail & Related papers (2024-10-06T14:26:37Z) - Multimodal Machine Learning in Mental Health: A Survey of Data, Algorithms, and Challenges [14.632649933582648]
The application of machine learning (ML) in detecting, diagnosing, and treating mental health disorders is garnering increasing attention.
multimodal ML, which combines information from multiple modalities, has demonstrated significant promise.
Despite its potential, multimodal ML in mental health remains an emerging field, facing several complex challenges before practical applications can be effectively developed.
arXiv Detail & Related papers (2024-07-23T19:07:56Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
Large Language Models (LLMs) have demonstrated exceptional task-solving capabilities, increasingly adopting roles akin to human-like assistants.
This paper presents a framework for investigating psychology dimension in LLMs, including psychological identification, assessment dataset curation, and assessment with results validation.
We introduce a comprehensive psychometrics benchmark for LLMs that covers six psychological dimensions: personality, values, emotion, theory of mind, motivation, and intelligence.
arXiv Detail & Related papers (2024-06-25T16:09:08Z) - Explainable AI for Mental Disorder Detection via Social Media: A survey and outlook [0.7689629183085726]
We conduct a thorough survey to explore the intersection of data science, artificial intelligence, and mental healthcare.
A significant portion of the population actively engages in online social media platforms, creating a vast repository of personal data.
The paper navigates through traditional diagnostic methods, state-of-the-art data- and AI-driven research studies, and the emergence of explainable AI (XAI) models for mental healthcare.
arXiv Detail & Related papers (2024-06-10T02:51:16Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
Psychological measurement is essential for mental health, self-understanding, and personal development.
PsychoGAT (Psychological Game AgenTs) achieves statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity.
arXiv Detail & Related papers (2024-02-19T18:00:30Z) - Large Language Model for Mental Health: A Systematic Review [2.9429776664692526]
Large language models (LLMs) have attracted significant attention for potential applications in digital health.
This systematic review focuses on their strengths and limitations in early screening, digital interventions, and clinical applications.
arXiv Detail & Related papers (2024-02-19T17:58:41Z) - Challenges of Large Language Models for Mental Health Counseling [4.604003661048267]
The global mental health crisis is looming with a rapid increase in mental disorders, limited resources, and the social stigma of seeking treatment.
The application of large language models (LLMs) in the mental health domain raises concerns regarding the accuracy, effectiveness, and reliability of the information provided.
This paper investigates the major challenges associated with the development of LLMs for psychological counseling, including model hallucination, interpretability, bias, privacy, and clinical effectiveness.
arXiv Detail & Related papers (2023-11-23T08:56:41Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks.
This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets.
arXiv Detail & Related papers (2023-10-10T03:05:44Z) - Aggression and "hate speech" in communication of media users: analysis
of control capabilities [50.591267188664666]
Authors studied the possibilities of mutual influence of users in new media.
They found a high level of aggression and hate speech when discussing an urgent social problem - measures for COVID-19 fighting.
Results can be useful for developing media content in a modern digital environment.
arXiv Detail & Related papers (2022-08-25T15:53:32Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
According to the World health organization (WHO), approximately 450 million people are affected.
Mental illnesses, such as depression, anxiety, bipolar disorder, ADHD, and PTSD.
This study analyzes unstructured user data on Reddit platform and classifies five common mental illnesses: depression, anxiety, bipolar disorder, ADHD, and PTSD.
arXiv Detail & Related papers (2022-07-03T11:33:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.