論文の概要: Envisioning Beyond the Pixels: Benchmarking Reasoning-Informed Visual Editing
- arxiv url: http://arxiv.org/abs/2504.02826v1
- Date: Thu, 03 Apr 2025 17:59:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:56:13.115551
- Title: Envisioning Beyond the Pixels: Benchmarking Reasoning-Informed Visual Editing
- Title(参考訳): ピクセルを超えて考える: 推論インフォームされたビジュアル編集のベンチマーク
- Authors: Xiangyu Zhao, Peiyuan Zhang, Kexian Tang, Hao Li, Zicheng Zhang, Guangtao Zhai, Junchi Yan, Hua Yang, Xue Yang, Haodong Duan,
- Abstract要約: RISEBenchはReasoning-Informed ViSual Editing (RISE)の最初のベンチマークである。
RISEBenchは、時間、因果、空間、論理的推論の4つの主要な推論タイプに焦点を当てている。
本稿では,人間の判断とLMM-as-a-judgeアプローチの両方を用いて,指示推論,外観整合性,視覚的可視性を評価する評価フレームワークを提案する。
- 参考スコア(独自算出の注目度): 90.65399476233495
- License:
- Abstract: Large Multi-modality Models (LMMs) have made significant progress in visual understanding and generation, but they still face challenges in General Visual Editing, particularly in following complex instructions, preserving appearance consistency, and supporting flexible input formats. To address this gap, we introduce RISEBench, the first benchmark for evaluating Reasoning-Informed viSual Editing (RISE). RISEBench focuses on four key reasoning types: Temporal, Causal, Spatial, and Logical Reasoning. We curate high-quality test cases for each category and propose an evaluation framework that assesses Instruction Reasoning, Appearance Consistency, and Visual Plausibility with both human judges and an LMM-as-a-judge approach. Our experiments reveal that while GPT-4o-Native significantly outperforms other open-source and proprietary models, even this state-of-the-art system struggles with logical reasoning tasks, highlighting an area that remains underexplored. As an initial effort, RISEBench aims to provide foundational insights into reasoning-aware visual editing and to catalyze future research. Though still in its early stages, we are committed to continuously expanding and refining the benchmark to support more comprehensive, reliable, and scalable evaluations of next-generation multimodal systems. Our code and data will be released at https://github.com/PhoenixZ810/RISEBench.
- Abstract(参考訳): LMM(Large Multi-modality Models)は、視覚的理解と生成において大きな進歩を遂げているが、一般的なビジュアル編集において、特に複雑な命令に従うこと、外観整合性を維持すること、柔軟な入力形式をサポートすることといった課題に直面している。
RISEBenchはReasoning-Informed ViSual Editing (RISE) を評価するための最初のベンチマークである。
RISEBenchは、時間、因果、空間、論理的推論の4つの主要な推論タイプに焦点を当てている。
我々は,各カテゴリの高品質なテストケースをキュレートし,人間の判断とLMM-as-a-judgeアプローチの両方を用いて,指示推論,外観整合性,視覚的可視性を評価する評価フレームワークを提案する。
我々の実験によると、GPT-4o-Nativeは他のオープンソースやプロプライエタリなモデルよりも大幅に優れていますが、最先端のシステムでさえ論理的推論タスクに苦戦し、未探索の領域を浮き彫りにしています。
最初の取り組みとしてRISEBenchは、推論を意識した視覚的編集に関する基礎的な洞察を提供し、将来の研究を促進することを目的としている。
まだ初期段階ですが、私たちは、より包括的で信頼性があり、スケーラブルな次世代マルチモーダルシステムの評価をサポートするために、ベンチマークの継続的な拡張と改善を約束しています。
私たちのコードとデータはhttps://github.com/PhoenixZ810/RISEBench.comで公開されます。
関連論文リスト
- Cognitive Paradigms for Evaluating VLMs on Visual Reasoning Task [3.2228025627337864]
機械の視覚的推論を改善するには、ビジョン・ランゲージ・モデル(VLM)がどのように複雑な視覚的パターンを処理し、解釈するかを深く理解する必要がある。
本研究は,自然画像に基づくボナード問題に基づくVLM推論を体系的に解析する,認知に着想を得た新しい評価フレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-23T12:42:42Z) - Evaluating and Advancing Multimodal Large Language Models in Ability Lens [30.083110119139793]
textbfAbilityLensは、6つの重要な知覚能力にまたがるMLLMを評価するために設計された統一ベンチマークである。
現在のモデルの長所と短所を特定し、安定性のパターンを強調し、オープンソースモデルとクローズドソースモデルの顕著なパフォーマンスギャップを明らかにします。
また、早期訓練段階から最高の能力チェックポイントを組み合わせ、能力衝突による性能低下を効果的に軽減する、簡易な能力特異的モデルマージ手法を設計する。
論文 参考訳(メタデータ) (2024-11-22T04:41:20Z) - A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends [67.43992456058541]
画像復元(IR)とは、ノイズ、ぼかし、気象効果などの劣化を除去しながら、画像の視覚的品質を改善する過程である。
従来のIR手法は、一般的に特定の種類の劣化をターゲットとしており、複雑な歪みを伴う現実のシナリオにおいて、その効果を制限している。
オールインワン画像復元(AiOIR)パラダイムが登場し、複数の劣化タイプに順応的に対処する統一されたフレームワークを提供する。
論文 参考訳(メタデータ) (2024-10-19T11:11:09Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
我々は、LVLM(Large Vision-Language Models)において、インターリーブされたマルチモーダル理解と生成を評価するための大規模ベンチマークであるMMIEを紹介する。
MMIEは、数学、コーディング、物理学、文学、健康、芸術を含む3つのカテゴリ、12のフィールド、102のサブフィールドにまたがる20Kの厳密にキュレートされたマルチモーダルクエリで構成されている。
インターリーブされたインプットとアウトプットの両方をサポートし、多様な能力を評価するために、複数選択とオープンな質問フォーマットの混合を提供する。
論文 参考訳(メタデータ) (2024-10-14T04:15:00Z) - Intriguing Properties of Large Language and Vision Models [18.449076451976236]
大規模言語とビジョンモデル(LLVM)は、その顕著な一般化性能のために、大きな注目と開発努力を受けている。
高度な推論タスクの達成にもかかわらず、基本的な知覚関連タスクのパフォーマンスは驚くほど低いままである。
LLVMの最も一般的なファミリー(LLaVA)を10評価ベンチマークで評価することで、この問題を調査する。
論文 参考訳(メタデータ) (2024-10-07T05:07:01Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Benchmarking Multi-Image Understanding in Vision and Language Models: Perception, Knowledge, Reasoning, and Multi-Hop Reasoning [15.296263261737026]
マルチイメージMIRBベンチマークを導入し、複数の画像を比較し、分析し、推論する視覚言語モデルの能力を評価する。
私たちのベンチマークには、知覚、視覚世界知識、推論、マルチホップ推論の4つのカテゴリが含まれています。
オープンソースVLMはシングルイメージタスクにおいてGPT-4Vに接近することを示したが、マルチイメージ推論タスクでは大きなギャップが残っている。
論文 参考訳(メタデータ) (2024-06-18T16:02:18Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
LVLM(Large Vision-Language Models)は幻覚に悩まされ、このモデルでは可聴音を発生させるが、実際には誤出力を発生させる。
既存のベンチマークはスコープに限られており、主にオブジェクト幻覚に焦点を当てている。
対象,属性,関係を多次元のベンチマークで表現し,連想バイアスに基づいて画像を選択する。
論文 参考訳(メタデータ) (2024-04-22T04:49:22Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
クロスドメイン学習(CD)とモデルフェアネスの関係について検討する。
いくつかの人口集団にまたがる顔画像と医療画像のベンチマークと、分類とローカライゼーションタスクについて紹介する。
本研究は,3つの最先端フェアネスアルゴリズムとともに,14のCDアプローチをカバーし,前者が後者に勝ることを示す。
論文 参考訳(メタデータ) (2023-03-25T09:34:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。