論文の概要: Envisioning Beyond the Pixels: Benchmarking Reasoning-Informed Visual Editing
- arxiv url: http://arxiv.org/abs/2504.02826v4
- Date: Tue, 27 May 2025 15:54:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 14:37:19.316539
- Title: Envisioning Beyond the Pixels: Benchmarking Reasoning-Informed Visual Editing
- Title(参考訳): ピクセルを超えて考える: 推論インフォームされたビジュアル編集のベンチマーク
- Authors: Xiangyu Zhao, Peiyuan Zhang, Kexian Tang, Xiaorong Zhu, Hao Li, Wenhao Chai, Zicheng Zhang, Renqiu Xia, Guangtao Zhai, Junchi Yan, Hua Yang, Xue Yang, Haodong Duan,
- Abstract要約: RISEBenchはReasoning-Informed ViSual Editing (RISE)の最初のベンチマークである。
RISEBenchは、時間、因果、空間、論理的推論の4つの主要な推論カテゴリに焦点を当てている。
オープンソースモデルとプロプライエタリモデルの両方を含む,9つの目立った視覚編集モデルを評価する実験を行った。
- 参考スコア(独自算出の注目度): 84.16442052968615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Multi-modality Models (LMMs) have made significant progress in visual understanding and generation, but they still face challenges in General Visual Editing, particularly in following complex instructions, preserving appearance consistency, and supporting flexible input formats. To study this gap, we introduce RISEBench, the first benchmark for evaluating Reasoning-Informed viSual Editing (RISE). RISEBench focuses on four key reasoning categories: Temporal, Causal, Spatial, and Logical Reasoning. We curate high-quality test cases for each category and propose an robust evaluation framework that assesses Instruction Reasoning, Appearance Consistency, and Visual Plausibility with both human judges and the LMM-as-a-judge approach. We conducted experiments evaluating nine prominent visual editing models, comprising both open-source and proprietary models. The evaluation results demonstrate that current models face significant challenges in reasoning-based editing tasks. Even the most powerful model evaluated, GPT-4o-Image, achieves an accuracy of merely 28.8%. RISEBench effectively highlights the limitations of contemporary editing models, provides valuable insights, and indicates potential future directions for the field of reasoning-aware visual editing. Our code and data have been released at https://github.com/PhoenixZ810/RISEBench.
- Abstract(参考訳): LMM(Large Multi-modality Models)は、視覚的理解と生成において大きな進歩を遂げているが、一般的なビジュアル編集において、特に複雑な命令に従うこと、外観整合性を維持すること、柔軟な入力形式をサポートすることといった課題に直面している。
RISEBenchはReasoning-Informed ViSual Editing (RISE) 評価のための最初のベンチマークである。
RISEBenchは、時間、因果、空間、論理的推論の4つの主要な推論カテゴリに焦点を当てている。
我々は,各カテゴリの高品質なテストケースをキュレートし,人間の判断とLMM-as-a-judgeアプローチの両方を用いて,指示推論,外観整合性,視覚プラウザビリティを評価する頑健な評価フレームワークを提案する。
オープンソースモデルとプロプライエタリモデルの両方を含む9つの顕著な視覚編集モデルの評価実験を行った。
評価結果は,従来のモデルが推論に基づく編集作業において重大な課題に直面していることを示している。
最も強力なモデルであるGPT-4o-Imageも28.8%の精度で評価されている。
RISEBenchは、現代の編集モデルの限界を効果的に強調し、価値ある洞察を提供し、推論を意識したビジュアル編集の分野における潜在的な方向性を示す。
私たちのコードとデータはhttps://github.com/PhoenixZ810/RISEBench.comで公開されています。
関連論文リスト
- Oedipus and the Sphinx: Benchmarking and Improving Visual Language Models for Complex Graphic Reasoning [14.984593408786045]
図形推論タスクにおける視覚言語モデル(VLM)の性能を評価するためにReasonBenchを提案する。
ReasonBenchには、現実世界のインテリジェンステストからの1,613の質問が含まれている。
我々は11の主流VLMをベンチマークし、現在のモデルの大幅な制限を明らかにした。
論文 参考訳(メタデータ) (2025-08-01T05:12:38Z) - MagiC: Evaluating Multimodal Cognition Toward Grounded Visual Reasoning [15.17428354380373]
我々は,マルチモーダル認知を評価するための総合的なベンチマークであるMagiCを紹介する。
我々は,最終回答正当性,推論妥当性,接地忠実度,自己補正能力の4次元にわたる7Bから70Bパラメータを含む15の視覚言語モデルを評価する。
論文 参考訳(メタデータ) (2025-07-09T21:44:12Z) - VFaith: Do Large Multimodal Models Really Reason on Seen Images Rather than Previous Memories? [34.7828249918764]
本稿では,MLLMの視覚的推論能力を評価する最初のベンチマークであるVFaith-Benchを紹介する。
VFaith-Benchは755のエントリを5つの異なるサブセットに分割し、追加の人間ラベルの知覚タスクを含む。
論文 参考訳(メタデータ) (2025-06-13T08:27:45Z) - What Changed? Detecting and Evaluating Instruction-Guided Image Edits with Multimodal Large Language Models [88.398085358514]
DICEは、原画像と編集画像の局所的な差異を検出するために設計されたモデルである。
自己監督、塗布ネットワークからの蒸留、全監督を利用する戦略を用いて訓練されている。
DICEは一貫性のある編集を効果的に識別し、異なる編集モデルによって生成された画像を人間の判断と強く相関して効果的に評価する。
論文 参考訳(メタデータ) (2025-05-26T18:00:10Z) - KRIS-Bench: Benchmarking Next-Level Intelligent Image Editing Models [88.58758610679762]
KRIS-Bench (Knowledge-based Reasoning in Image-editing Systems Benchmark) は、認知的なレンズを通してモデルを評価するための診断ベンチマークである。
本研究は,3つの基礎知識タイプ(実例,概念,手続き)にまたがる編集タスクを分類する。
詳細な評価を支援するため,人間の研究により知識ヒントによって強化され,校正された新しい知識プラウザビリティ指標を組み込んだプロトコルを提案する。
論文 参考訳(メタデータ) (2025-05-22T14:08:59Z) - Benchmarking Multimodal Mathematical Reasoning with Explicit Visual Dependency [29.28977802424541]
視覚的依存を明示する多モーダル数学的推論のための総合的なベンチマークであるVCBENCHを紹介する。
VCBENCHには6つの認知領域に1,720の問題がある。
我々は、VCBENCH上で26の最先端LVLMを評価し、高い性能差を示し、トップモデルでさえ50%以上の精度を達成できなかった。
論文 参考訳(メタデータ) (2025-04-24T06:16:38Z) - V-MAGE: A Game Evaluation Framework for Assessing Visual-Centric Capabilities in Multimodal Large Language Models [84.27290155010533]
V-MAGEはMLLMの視覚的推論能力を評価するために設計されたゲームベースの評価フレームワークである。
V-MAGEを用いて主要なMLLMを評価し,視覚的知覚と推論において重要な課題を明らかにする。
論文 参考訳(メタデータ) (2025-04-08T15:43:01Z) - VERIFY: A Benchmark of Visual Explanation and Reasoning for Investigating Multimodal Reasoning Fidelity [34.29409506366145]
VERIFYは最先端MLLMの視覚的推論能力を分離し、厳格に評価するために設計されたベンチマークである。
それぞれの問題には人手による推論パスが伴い、モデル決定プロセスの詳細な評価を初めて提供する。
本稿では,従来のモデル推論パターンにおける重要な不均衡を浮き彫りにして,単なる精度を超える視覚的推論の忠実さを評価する新しい指標を提案する。
論文 参考訳(メタデータ) (2025-03-14T16:26:11Z) - VLRMBench: A Comprehensive and Challenging Benchmark for Vision-Language Reward Models [40.87249469370042]
視覚言語モデル(VLRM)は、推論プロセスにおいてますます重要になっている。
既存の視覚言語RM(VLRM)のベンチマークは、通常、その能力の1つの側面しか評価しない。
我々は、12,634の質問を含むVLRMBenchと呼ばれる包括的で挑戦的なベンチマークを提案する。
論文 参考訳(メタデータ) (2025-03-10T15:52:57Z) - VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning [63.0285363282581]
MLLM(Multimodal Large Language Models)は、視覚情報とテキスト情報を統合するための強力なツールとなっている。
本稿では,MLLMの知覚的理解と抽象的関係推論を評価するためのベンチマークVOILAを紹介する。
我々は,現在のMLLMが画像間関係の理解に苦慮し,高レベルの関係推論において限られた能力を示すことを明らかにした。
論文 参考訳(メタデータ) (2025-02-25T23:36:19Z) - VisFactor: Benchmarking Fundamental Visual Cognition in Multimodal Large Language Models [62.667142971664575]
因子関連認知テスト(FRCT)から得られた新しいベンチマークであるVisFactorを紹介する。
VisFactorは視覚関連FRCTサブテストのデジタル化を行い、基本的な視覚認知タスク間でMLLMを体系的に評価する。
GPT-4o, Gemini-Pro, Qwen-VLなどの最先端MLLMの総合評価を行った。
論文 参考訳(メタデータ) (2025-02-23T04:21:32Z) - Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data [35.229595049396245]
LMMの認識と説明性を改善するための新しい視覚的拒絶サンプリングフレームワークを提案する。
私たちのアプローチは、人間の検証可能な視覚的特徴を含む解釈可能な答えを合成することから始まります。
各ラウンドの微調整の後、最高品質の解答を選択するために報酬モデルのないフィルタリング機構を適用する。
論文 参考訳(メタデータ) (2025-02-19T19:05:45Z) - Cognitive Paradigms for Evaluating VLMs on Visual Reasoning Task [3.2228025627337864]
機械の視覚的推論を改善するには、ビジョン・ランゲージ・モデル(VLM)がどのように複雑な視覚的パターンを処理し、解釈するかを深く理解する必要がある。
本研究は,自然画像に基づくボナード問題に基づくVLM推論を体系的に解析する,認知に着想を得た新しい評価フレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-23T12:42:42Z) - Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
本稿では、推論と批判モデルの役割を分離する2人プレイヤパラダイムを提案する。
まず、批判データを収集する自動化およびスケーラブルなフレームワークであるAutoMathCritiqueを提案する。
テスト時間における難解なクエリに対するアクターのパフォーマンスを,批判モデルが一貫して改善することが実証された。
論文 参考訳(メタデータ) (2024-11-25T17:11:54Z) - A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends [67.43992456058541]
画像復元(IR)とは、ノイズ、ぼかし、気象効果などの劣化を除去しながら、画像の視覚的品質を改善する過程である。
従来のIR手法は、一般的に特定の種類の劣化をターゲットとしており、複雑な歪みを伴う現実のシナリオにおいて、その効果を制限している。
オールインワン画像復元(AiOIR)パラダイムが登場し、複数の劣化タイプに順応的に対処する統一されたフレームワークを提供する。
論文 参考訳(メタデータ) (2024-10-19T11:11:09Z) - VHELM: A Holistic Evaluation of Vision Language Models [75.88987277686914]
視覚言語モデル(VHELM)の全体的評価について述べる。
VHELMは、視覚的知覚、知識、推論、バイアス、公平性、多言語性、堅牢性、毒性、安全性の9つの側面の1つ以上をカバーするために、さまざまなデータセットを集約する。
私たちのフレームワークは軽量で自動で、評価の実行が安価で高速に行えるように設計されています。
論文 参考訳(メタデータ) (2024-10-09T17:46:34Z) - Intriguing Properties of Large Language and Vision Models [18.449076451976236]
大規模言語とビジョンモデル(LLVM)は、その顕著な一般化性能のために、大きな注目と開発努力を受けている。
高度な推論タスクの達成にもかかわらず、基本的な知覚関連タスクのパフォーマンスは驚くほど低いままである。
LLVMの最も一般的なファミリー(LLaVA)を10評価ベンチマークで評価することで、この問題を調査する。
論文 参考訳(メタデータ) (2024-10-07T05:07:01Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
LVLM(Large Vision-Language Models)は幻覚に悩まされ、このモデルでは可聴音を発生させるが、実際には誤出力を発生させる。
既存のベンチマークはスコープに限られており、主にオブジェクト幻覚に焦点を当てている。
対象,属性,関係を多次元のベンチマークで表現し,連想バイアスに基づいて画像を選択する。
論文 参考訳(メタデータ) (2024-04-22T04:49:22Z) - MM-MATH: Advancing Multimodal Math Evaluation with Process Evaluation and Fine-grained Classification [41.53026834367054]
本稿では,マルチモーダル数学推論のための新しいベンチマークMM-MATHを提案する。
MM-MATHは、5,929個のオープンエンド中等教育数学問題と視覚的文脈を持ち、難易度、学級レベル、知識点の詳細な分類を行う。
最高の性能モデルはMM-MATHで31%の精度しか達成していないが、人間では82%である。
論文 参考訳(メタデータ) (2024-04-07T22:16:50Z) - Counterfactual Edits for Generative Evaluation [0.0]
本稿では,画素の代わりに概念に基づく合成結果の評価と説明のためのフレームワークを提案する。
我々のフレームワークは、どのオブジェクトや属性を挿入、削除、または置き換えるべきかを下記した知識ベースの偽物編集を利用する。
局所的な編集を蓄積したグローバルな説明は、モデルが合計で生成できない概念を明らかにすることもできる。
論文 参考訳(メタデータ) (2023-03-02T20:10:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。