Enhanced ECG Arrhythmia Detection Accuracy by Optimizing Divergence-Based Data Fusion
- URL: http://arxiv.org/abs/2504.02842v1
- Date: Wed, 19 Mar 2025 12:16:48 GMT
- Title: Enhanced ECG Arrhythmia Detection Accuracy by Optimizing Divergence-Based Data Fusion
- Authors: Baozhuo Su, Qingli Dou, Kang Liu, Zhengxian Qu, Jerry Deng, Ting Tan, Yanan Gu,
- Abstract summary: We propose a feature-based fusion algorithm utilizing Kernel Density Estimation (KDE) and Kullback-Leibler (KL) divergence.<n>Using our in-house datasets consisting of ECG signals collected from 2000 healthy and 2000 diseased individuals, we verify our method by using the publicly available PTB-XL dataset.<n>The results demonstrate that the proposed fusion method significantly enhances feature-based classification accuracy for abnormal ECG cases in the merged datasets.
- Score: 5.575308369829893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI computation in healthcare faces significant challenges when clinical datasets are limited and heterogeneous. Integrating datasets from multiple sources and different equipments is critical for effective AI computation but is complicated by their diversity, complexity, and lack of representativeness, so we often need to join multiple datasets for analysis. The currently used method is fusion after normalization. But when using this method, it can introduce redundant information, decreasing the signal-to-noise ratio and reducing classification accuracy. To tackle this issue, we propose a feature-based fusion algorithm utilizing Kernel Density Estimation (KDE) and Kullback-Leibler (KL) divergence. Our approach involves initially preprocessing and continuous estimation on the extracted features, followed by employing the gradient descent method to identify the optimal linear parameters that minimize the KL divergence between the feature distributions. Using our in-house datasets consisting of ECG signals collected from 2000 healthy and 2000 diseased individuals by different equipments and verifying our method by using the publicly available PTB-XL dataset which contains 21,837 ECG recordings from 18,885 patients. We employ a Light Gradient Boosting Machine (LGBM) model to do the binary classification. The results demonstrate that the proposed fusion method significantly enhances feature-based classification accuracy for abnormal ECG cases in the merged datasets, compared to the normalization method. This data fusion strategy provides a new approach to process heterogeneous datasets for the optimal AI computation results.
Related papers
- Improved Anomaly Detection through Conditional Latent Space VAE Ensembles [49.1574468325115]
Conditional Latent space Variational Autoencoder (CL-VAE) improved pre-processing for anomaly detection on data with known inlier classes and unknown outlier classes.
Model shows increased accuracy in anomaly detection, achieving an AUC of 97.4% on the MNIST dataset.
In addition, the CL-VAE shows increased benefits from ensembling, a more interpretable latent space, and an increased ability to learn patterns in complex data with limited model sizes.
arXiv Detail & Related papers (2024-10-16T07:48:53Z) - FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
We propose a new end-to-end framework, FORESEE, for robustly predicting patient survival by mining multimodal information.
Cross-fusion transformer effectively utilizes features at the cellular level, tissue level, and tumor heterogeneity level to correlate prognosis.
The hybrid attention encoder (HAE) uses the denoising contextual attention module to obtain the contextual relationship features.
We also propose an asymmetrically masked triplet masked autoencoder to reconstruct lost information within modalities.
arXiv Detail & Related papers (2024-05-13T12:39:08Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - An Explainable Deep Learning-Based Method For Schizophrenia Diagnosis Using Generative Data-Augmentation [0.3222802562733786]
We leverage a deep learning-based method for the automatic diagnosis of schizophrenia using EEG brain recordings.
This approach utilizes generative data augmentation, a powerful technique that enhances the accuracy of the diagnosis.
arXiv Detail & Related papers (2023-10-25T12:55:16Z) - Optimal transport for automatic alignment of untargeted metabolomic data [8.692678207022084]
We introduce GromovMatcher, a flexible and user-friendly algorithm that automatically combines LC-MS datasets using optimal transport.
By capitalizing on feature intensity correlation structures, GromovMatcher delivers superior alignment accuracy and robustness.
We show how GromovMatcher facilitates the search for biomarkers associated with lifestyle risk factors linked to several cancer types.
arXiv Detail & Related papers (2023-06-05T20:08:19Z) - A Federated Learning-based Industrial Health Prognostics for
Heterogeneous Edge Devices using Matched Feature Extraction [16.337207503536384]
We propose a pioneering FL-based health prognostic model with a feature similarity-matched parameter aggregation algorithm.
We show that the proposed method yields accuracy improvements as high as 44.5% and 39.3% for state-of-health estimation and remaining useful life estimation.
arXiv Detail & Related papers (2023-05-13T07:20:31Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Application of federated learning techniques for arrhythmia
classification using 12-lead ECG signals [0.11184789007828977]
This work uses a Federated Learning (FL) privacy-preserving methodology to train AI models over heterogeneous sets of high-definition ECG.
We demonstrated comparable performance to models trained using CL, IID, and non-IID approaches.
arXiv Detail & Related papers (2022-08-23T14:21:16Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
This paper proposes two strategies to handle missing data for the classification of electroencephalograms.
The first approach estimates the covariance from imputed data with the $k$-nearest neighbors algorithm; the second relies on the observed data by leveraging the observed-data likelihood within an expectation-maximization algorithm.
As results show, the proposed strategies perform better than the classification based on observed data and allow to keep a high accuracy even when the missing data ratio increases.
arXiv Detail & Related papers (2021-10-19T14:24:50Z) - Non-stationary Gaussian process discriminant analysis with variable
selection for high-dimensional functional data [0.0]
High-dimensional classification and feature selection are ubiquitous with the recent advancement in data acquisition technology.
These structures pose additional challenges to commonly used methods that rely mainly on a two-stage approach performing variable selection and classification separately.
We propose in this work a novel Gaussian process discriminant analysis (GPDA) that combines these steps in a unified framework.
arXiv Detail & Related papers (2021-09-29T03:35:49Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.