Non-stationary Gaussian process discriminant analysis with variable
selection for high-dimensional functional data
- URL: http://arxiv.org/abs/2109.14171v1
- Date: Wed, 29 Sep 2021 03:35:49 GMT
- Title: Non-stationary Gaussian process discriminant analysis with variable
selection for high-dimensional functional data
- Authors: W Yu, S Wade, H D Bondell, L Azizi
- Abstract summary: High-dimensional classification and feature selection are ubiquitous with the recent advancement in data acquisition technology.
These structures pose additional challenges to commonly used methods that rely mainly on a two-stage approach performing variable selection and classification separately.
We propose in this work a novel Gaussian process discriminant analysis (GPDA) that combines these steps in a unified framework.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-dimensional classification and feature selection tasks are ubiquitous
with the recent advancement in data acquisition technology. In several
application areas such as biology, genomics and proteomics, the data are often
functional in their nature and exhibit a degree of roughness and
non-stationarity. These structures pose additional challenges to commonly used
methods that rely mainly on a two-stage approach performing variable selection
and classification separately. We propose in this work a novel Gaussian process
discriminant analysis (GPDA) that combines these steps in a unified framework.
Our model is a two-layer non-stationary Gaussian process coupled with an Ising
prior to identify differentially-distributed locations. Scalable inference is
achieved via developing a variational scheme that exploits advances in the use
of sparse inverse covariance matrices. We demonstrate the performance of our
methodology on simulated datasets and two proteomics datasets: breast cancer
and SARS-CoV-2. Our approach distinguishes itself by offering explainability as
well as uncertainty quantification in addition to low computational cost, which
are crucial to increase trust and social acceptance of data-driven tools.
Related papers
- GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Joint Distributional Learning via Cramer-Wold Distance [0.7614628596146602]
We introduce the Cramer-Wold distance regularization, which can be computed in a closed-form, to facilitate joint distributional learning for high-dimensional datasets.
We also introduce a two-step learning method to enable flexible prior modeling and improve the alignment between the aggregated posterior and the prior distribution.
arXiv Detail & Related papers (2023-10-25T05:24:23Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - Learning Causal Representations of Single Cells via Sparse Mechanism
Shift Modeling [3.2435888122704037]
We propose a deep generative model of single-cell gene expression data for which each perturbation is treated as an intervention targeting an unknown, but sparse, subset of latent variables.
We benchmark these methods on simulated single-cell data to evaluate their performance at latent units recovery, causal target identification and out-of-domain generalization.
arXiv Detail & Related papers (2022-11-07T15:47:40Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
We introduce several ways to perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms such as Illumina and PacBio.
We show that some simulation-based approaches are more robust (and accurate) than others for specific embedding methods to certain adversarial attacks to the input sequences.
arXiv Detail & Related papers (2022-07-18T19:16:56Z) - Scalable Regularised Joint Mixture Models [2.0686407686198263]
In many applications, data can be heterogeneous in the sense of spanning latent groups with different underlying distributions.
We propose an approach for heterogeneous data that allows joint learning of (i) explicit multivariate feature distributions, (ii) high-dimensional regression models and (iii) latent group labels.
The approach is demonstrably effective in high dimensions, combining data reduction for computational efficiency with a re-weighting scheme that retains key signals even when the number of features is large.
arXiv Detail & Related papers (2022-05-03T13:38:58Z) - Linear Discriminant Analysis with High-dimensional Mixed Variables [10.774094462083843]
This paper develops a novel approach for classifying high-dimensional observations with mixed variables.
We overcome the challenge of having to split data into exponentially many cells.
Results on the estimation accuracy and the misclassification rates are established.
arXiv Detail & Related papers (2021-12-14T03:57:56Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
Bi-Lipschitz regularization of neural network layers preserve relative distances between data instances in the feature spaces of each layer.
With the use of an attentive set encoder, we propose to meta learn either diagonal or diagonal plus low-rank factors to efficiently construct task specific covariance matrices.
We also propose an inference procedure which utilizes scaled energy to achieve a final predictive distribution.
arXiv Detail & Related papers (2021-10-12T22:04:19Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.