Exploration of Multi-Element Collaborative Research and Application for Modern Power System Based on Generative Large Models
- URL: http://arxiv.org/abs/2504.02855v1
- Date: Wed, 26 Mar 2025 17:58:49 GMT
- Title: Exploration of Multi-Element Collaborative Research and Application for Modern Power System Based on Generative Large Models
- Authors: Lu Cheng, Qixiu Zhang, Beibei Xu, Zhiwei Huang, Cirun Zhang, Yanan Lyu, Fan Zhang,
- Abstract summary: Generative Large Models (GLMs) provide a data-driven approach to enhancing forecasting, scheduling, and market operations.<n>By leveragingtemporal modeling and reinforcement learning, GLMs enable dynamic energy scheduling, improve grid stability, enhance carbon trading strategies, and strengthen resilience against extreme weather events.
- Score: 4.854786697610143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The transition to intelligent, low-carbon power systems necessitates advanced optimization strategies for managing renewable energy integration, energy storage, and carbon emissions. Generative Large Models (GLMs) provide a data-driven approach to enhancing forecasting, scheduling, and market operations by processing multi-source data and capturing complex system dynamics. This paper explores the role of GLMs in optimizing load-side management, energy storage utilization, and electricity carbon, with a focus on Smart Wide-area Hybrid Energy Systems with Storage and Carbon (SGLSC). By leveraging spatiotemporal modeling and reinforcement learning, GLMs enable dynamic energy scheduling, improve grid stability, enhance carbon trading strategies, and strengthen resilience against extreme weather events. The proposed framework highlights the transformative potential of GLMs in achieving efficient, adaptive, and low-carbon power system operations.
Related papers
- Graph-Enhanced Model-Free Reinforcement Learning Agents for Efficient Power Grid Topological Control [0.24578723416255752]
This paper presents a novel approach within the model-free framework of reinforcement learning, aimed at optimizing power network operations without prior expert knowledge.<n>We demonstrate that our approach achieves a consistent reduction in power losses, while ensuring grid stability against potential blackouts.
arXiv Detail & Related papers (2025-03-26T16:20:30Z) - Multi-Agent Architecture in Distributed Environment Control Systems: vision, challenges, and opportunities [50.38638300332429]
We propose a multi-agent architecture for distributed control of air-cooled chiller systems in data centers.<n>Our vision employs autonomous agents to monitor and regulate local operational parameters and optimize system-wide efficiency.
arXiv Detail & Related papers (2025-02-21T18:41:03Z) - Advancing Generative Artificial Intelligence and Large Language Models for Demand Side Management with Internet of Electric Vehicles [52.43886862287498]
This paper explores the integration of large language models (LLMs) into energy management.<n>We propose an innovative solution that enhances LLMs with retrieval-augmented generation for automatic problem formulation, code generation, and customizing optimization.<n>We present a case study to demonstrate the effectiveness of our proposed solution in charging scheduling and optimization for electric vehicles.
arXiv Detail & Related papers (2025-01-26T14:31:03Z) - Reinforcement Learning for Efficient Design and Control Co-optimisation of Energy Systems [0.0]
This study introduces a novel reinforcement learning framework tailored for the co-optimisation of design and control in energy systems.
By leveraging RL's model-free capabilities, the framework eliminates the need for explicit system modelling.
This contribution paves the way for advanced RL applications in energy management, leading to more efficient and effective use of renewable energy sources.
arXiv Detail & Related papers (2024-06-28T11:01:02Z) - Empowering Distributed Solutions in Renewable Energy Systems and Grid
Optimization [3.8979646385036175]
Machine learning (ML) advancements play a crucial role in empowering renewable energy sources and improving grid management.
The incorporation of big data and ML into smart grids offers several advantages, including heightened energy efficiency.
However, challenges like handling large data volumes, ensuring cybersecurity, and obtaining specialized expertise must be addressed.
arXiv Detail & Related papers (2023-10-24T02:45:16Z) - Multi-market Energy Optimization with Renewables via Reinforcement
Learning [1.0878040851638]
This paper introduces a deep reinforcement learning framework for optimizing the operations of power plants pairing renewable energy with storage.
The framework handles complexities such as time coupling by storage devices, uncertainty in renewable generation and energy prices, and non-linear storage models.
It utilizes RL to incorporate complex storage models, overcoming restrictions of optimization-based methods that require convex and differentiable component models.
arXiv Detail & Related papers (2023-06-13T21:35:24Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Battery and Hydrogen Energy Storage Control in a Smart Energy Network
with Flexible Energy Demand using Deep Reinforcement Learning [2.5666730153464465]
We introduce a hybrid energy storage system composed of battery and hydrogen energy storage.
We propose a deep reinforcement learning-based control strategy to optimise the scheduling of the hybrid energy storage system and energy demand in real-time.
arXiv Detail & Related papers (2022-08-26T16:47:48Z) - A Multi-Agent Deep Reinforcement Learning Approach for a Distributed
Energy Marketplace in Smart Grids [58.666456917115056]
This paper presents a Reinforcement Learning based energy market for a prosumer dominated microgrid.
The proposed market model facilitates a real-time and demanddependent dynamic pricing environment, which reduces grid costs and improves the economic benefits for prosumers.
arXiv Detail & Related papers (2020-09-23T02:17:51Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.