Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning
- URL: http://arxiv.org/abs/2002.05651v2
- Date: Tue, 29 Nov 2022 08:53:47 GMT
- Title: Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning
- Authors: Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan
Jurafsky, Joelle Pineau
- Abstract summary: We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
- Score: 68.37641996188133
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate reporting of energy and carbon usage is essential for understanding
the potential climate impacts of machine learning research. We introduce a
framework that makes this easier by providing a simple interface for tracking
realtime energy consumption and carbon emissions, as well as generating
standardized online appendices. Utilizing this framework, we create a
leaderboard for energy efficient reinforcement learning algorithms to
incentivize responsible research in this area as an example for other areas of
machine learning. Finally, based on case studies using our framework, we
propose strategies for mitigation of carbon emissions and reduction of energy
consumption. By making accounting easier, we hope to further the sustainable
development of machine learning experiments and spur more research into energy
efficient algorithms.
Related papers
- Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - A Carbon Tracking Model for Federated Learning: Impact of Quantization and Sparsification [5.341266334051207]
Federated Learning (FL) methods adopt efficient communication technologies to distribute machine learning tasks across edge devices.
This paper proposes a framework for real-time monitoring of the energy and carbon footprint impacts of FL systems.
arXiv Detail & Related papers (2023-10-12T07:20:03Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Energy Efficiency of Training Neural Network Architectures: An Empirical
Study [11.325530936177493]
The evaluation of Deep Learning models has traditionally focused on criteria such as accuracy, F1 score, and related measures.
The computations needed to train such models entail a large carbon footprint.
We study the relations between DL model architectures and their environmental impact in terms of energy consumed and CO$$ emissions produced during training.
arXiv Detail & Related papers (2023-02-02T09:20:54Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - Full-Cycle Energy Consumption Benchmark for Low-Carbon Computer Vision [31.781943982148025]
We present the first large-scale energy consumption benchmark for efficient computer vision models.
A new metric is proposed to explicitly evaluate the full-cycle energy consumption under different model usage intensity.
arXiv Detail & Related papers (2021-08-30T18:22:36Z) - AI Chiller: An Open IoT Cloud Based Machine Learning Framework for the
Energy Saving of Building HVAC System via Big Data Analytics on the Fusion of
BMS and Environmental Data [12.681421165031576]
Energy saving and carbon emission reduction in buildings is one of the key measures in combating climate change.
The optimization of chiller system power consumption had been extensively studied in the mechanical engineering and building service domains.
With the advance of big data and AI, the adoption of machine learning into the optimization problems becomes popular.
arXiv Detail & Related papers (2020-10-09T09:51:03Z) - Carbontracker: Tracking and Predicting the Carbon Footprint of Training
Deep Learning Models [0.3441021278275805]
Machine learning (ML) may become a significant contributor to climate change if this exponential trend continues.
We propose that energy and carbon footprint of model development and training is reported alongside performance metrics using tools like Carbontracker.
arXiv Detail & Related papers (2020-07-06T20:24:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.