論文の概要: Enhancing Traffic Sign Recognition On The Performance Based On Yolov8
- arxiv url: http://arxiv.org/abs/2504.02884v1
- Date: Wed, 02 Apr 2025 07:28:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:47:29.343005
- Title: Enhancing Traffic Sign Recognition On The Performance Based On Yolov8
- Title(参考訳): Yolov8に基づく交通信号認識の高速化
- Authors: Baba Ibrahim, Zhou Kui,
- Abstract要約: この論文では、高度なデータ拡張技術を統合する拡張YOLOv8ベースの検出システムを提案する。
GTSRB、TT100K、GTSDBなどのデータセットで実施された実験では、検出精度、悪条件下での堅牢性、エッジデバイス上でのリアルタイム推論が著しく改善された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper Traffic sign recognition plays a crucial role in the development of autonomous vehicles and advanced driver-assistance systems (ADAS). Despite significant advances in deep learning and object detection, accurately detecting and classifying traffic signs remains challenging due to their small sizes, variable environmental conditions, occlusion, and class imbalance. This thesis presents an enhanced YOLOv8-based detection system that integrates advanced data augmentation techniques, novel architectural enhancements including Coordinate Attention (CA), Bidirectional Feature Pyramid Network (BiFPN), and dynamic modules such as ODConv and LSKA, along with refined loss functions (EIoU and WIoU combined with Focal Loss). Extensive experiments conducted on datasets including GTSRB, TT100K, and GTSDB demonstrate marked improvements in detection accuracy, robustness under adverse conditions, and real-time inference on edge devices. The findings contribute actionable insights for deploying reliable traffic sign recognition systems in real-world autonomous driving scenarios.
- Abstract(参考訳): 本稿では,自動走行車と高度運転支援システム(ADAS)の開発において,交通標識認識が重要な役割を担っている。
深層学習と物体検出の大幅な進歩にもかかわらず、交通標識の正確な検出と分類は、その小ささ、環境条件の変動、閉塞、およびクラス不均衡により難しいままである。
この論文では、高度なデータ拡張技術、コーディネート・アテンション(CA)、双方向特徴ピラミッドネットワーク(BiFPN)、ODConvやLSKAなどの動的モジュール、そして洗練された損失関数(EooUとWIoUとFocal Loss)を統合したYOLOv8ベースの検出システムについて述べる。
GTSRB、TT100K、GTSDBなどのデータセットで実施された大規模な実験では、検出精度、悪条件下での堅牢性、エッジデバイスでのリアルタイム推論が著しく改善された。
この結果は、現実の自律走行シナリオにおいて、信頼できる交通標識認識システムをデプロイするための実用的な洞察に寄与する。
関連論文リスト
- YOLO-TS: Real-Time Traffic Sign Detection with Enhanced Accuracy Using Optimized Receptive Fields and Anchor-Free Fusion [15.571409945909243]
本稿では,新しいリアルタイムかつ効率的な道路標識検出ネットワーク YOLO-TS を提案する。
このネットワークは,マルチスケール特徴写像の受容場を最適化することにより,性能を著しく向上させる。
我々の革新的な機能融合戦略は、アンカーフリー手法の柔軟性を活用し、精度と速度の両面で顕著な向上を実現している。
論文 参考訳(メタデータ) (2024-10-22T16:19:55Z) - DSDFormer: An Innovative Transformer-Mamba Framework for Robust High-Precision Driver Distraction Identification [23.05821759499963]
ドライバーの気晴らしは依然として交通事故の主要な原因であり、世界中の道路安全にとって重大な脅威となっている。
本稿では,Transformer と Mamba アーキテクチャの長所を統合するフレームワークである DSDFormer を提案する。
また、ビデオの時間相関を利用してノイズラベルを洗練させる教師なしアプローチであるTRCL(Temporal Reasoning Confident Learning)も導入した。
論文 参考訳(メタデータ) (2024-09-09T13:16:15Z) - AI-Driven Intrusion Detection Systems (IDS) on the ROAD Dataset: A Comparative Analysis for Automotive Controller Area Network (CAN) [4.081467217340597]
コントロールエリアネットワーク(CAN)バスは、電子制御ユニット(ECU)間の車内通信を管理する中央システムである。
CANプロトコルは、固有の脆弱性、暗号化と認証の欠如、攻撃面の拡大、堅牢なセキュリティ対策を必要とするセキュリティ上の問題を引き起こす。
本稿では、ステルスと洗練された注入を含む最新のROADデータセットについて考察する。
論文 参考訳(メタデータ) (2024-08-30T12:26:23Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - DRUformer: Enhancing the driving scene Important object detection with
driving relationship self-understanding [50.81809690183755]
交通事故はしばしば致命傷を負い、2023年まで5000万人以上の死者を出した。
従来の研究は、主に個々の参加者の重要性を評価し、それらを独立した存在として扱うものであった。
本稿では、重要な物体検出タスクを強化するために、運転シーン関連自己理解変換器(DRUformer)を紹介する。
論文 参考訳(メタデータ) (2023-11-11T07:26:47Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Effects of Real-Life Traffic Sign Alteration on YOLOv7- an Object
Recognition Model [1.6334452280183571]
本研究では,物体認識の精度と有効性に対する交通標識の変化の影響について検討した。
形状、色、コンテンツ、可視性、角度、背景の変更を導入するために、公開データセットを使用している。
この研究は、異常な状況下で交通標識に直面すると、検出と分類の精度が著しく低下することを示している。
論文 参考訳(メタデータ) (2023-05-09T14:51:29Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
畳み込み層を用いたディープニューラルネットワーク(DNN)は、通信における多くのタスクにおいて最先端である。
画像分類のような他の領域では、DNNは敵の摂動に弱いことが示されている。
最新モデルの堅牢性をテストするための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-27T19:58:06Z) - Automotive Radar Interference Mitigation with Unfolded Robust PCA based
on Residual Overcomplete Auto-Encoder Blocks [88.46770122522697]
自律走行では、レーダーシステムは道路上の他の車両のような標的を検出する上で重要な役割を果たす。
自動車用レーダー干渉緩和のための深層学習手法は、目標の振幅を確実に推定できるが、それぞれの目標の位相を回復できない。
干渉の有無で振幅と位相の両方を推定できる効率的かつ効率的な手法を提案する。
論文 参考訳(メタデータ) (2020-10-14T09:41:06Z) - Traffic Signs Detection and Recognition System using Deep Learning [0.0]
本稿では,交通標識をリアルタイムに検出・認識するためのアプローチについて述べる。
マルチオブジェクト検出システムの最先端技術を用いて,交通信号検出問題に取り組む。
この論文の焦点は、F-RCNN Inception v2とTiny YOLO v2が最高の結果を得たときのものである。
論文 参考訳(メタデータ) (2020-03-06T14:54:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。