論文の概要: Noiser: Bounded Input Perturbations for Attributing Large Language Models
- arxiv url: http://arxiv.org/abs/2504.02911v1
- Date: Thu, 03 Apr 2025 10:59:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:49:42.699917
- Title: Noiser: Bounded Input Perturbations for Attributing Large Language Models
- Title(参考訳): 雑音:大規模言語モデルに寄与する境界入力摂動
- Authors: Mohammad Reza Ghasemi Madani, Aryo Pradipta Gema, Gabriele Sarti, Yu Zhao, Pasquale Minervini, Andrea Passerini,
- Abstract要約: 本稿では,各入力埋め込みに有界雑音を課す摂動型FA法であるノイズ器を紹介する。
ノイズは、信頼度と応答性の両方の観点から、既存の勾配、注意に基づく、摂動に基づくFA法を一貫して上回っていることを実証する。
- 参考スコア(独自算出の注目度): 17.82404809465846
- License:
- Abstract: Feature attribution (FA) methods are common post-hoc approaches that explain how Large Language Models (LLMs) make predictions. Accordingly, generating faithful attributions that reflect the actual inner behavior of the model is crucial. In this paper, we introduce Noiser, a perturbation-based FA method that imposes bounded noise on each input embedding and measures the robustness of the model against partially noised input to obtain the input attributions. Additionally, we propose an answerability metric that employs an instructed judge model to assess the extent to which highly scored tokens suffice to recover the predicted output. Through a comprehensive evaluation across six LLMs and three tasks, we demonstrate that Noiser consistently outperforms existing gradient-based, attention-based, and perturbation-based FA methods in terms of both faithfulness and answerability, making it a robust and effective approach for explaining language model predictions.
- Abstract(参考訳): FA(Feature Attribution)メソッドは、Large Language Models(LLM)がどのように予測するかを説明する一般的なポストホックなアプローチである。
したがって、モデルの内部動作を反映した忠実な属性を生成することが重要である。
本稿では,各入力埋め込みに有界雑音を課し,入力属性を得るための部分雑音入力に対してモデルのロバスト性を計測する摂動型FA法であるノイズ器を紹介する。
さらに,高得点のトークンが予測出力を回復するのに十分な程度を評価するために,指示された判定モデルを用いた応答可能性指標を提案する。
6つのLCMと3つのタスクの総合的な評価を通じて、ノイズは既存の勾配に基づく、注意に基づく、および摂動に基づくFA法を忠実性と応答性の両方の観点から一貫して上回り、言語モデル予測を説明するための堅牢で効果的なアプローチであることを示す。
関連論文リスト
- Counterfactuals As a Means for Evaluating Faithfulness of Attribution Methods in Autoregressive Language Models [6.394084132117747]
本稿では,自己回帰型言語モデルに対する帰属手法の忠実度を評価するために,反事実生成を利用する手法を提案する。
提案手法は, 流動性, 分散性, 分散性, 分散性, 評価プロトコルの信頼性を向上する。
論文 参考訳(メタデータ) (2024-08-21T00:17:59Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
AMPLIFY(Post Hoc Explanations)を用いたインコンテキスト学習の活用によるモデル性能向上のための新しいフレームワークを提案する。
我々は,各入力特徴がモデル予測に与える影響を抽出し,帰属スコア(説明)を出力するポストホック説明手法を活用する。
AMPLIFYは,幅広いタスクに対して約10~25%の精度向上を実現している。
論文 参考訳(メタデータ) (2023-05-19T04:46:04Z) - Explaining Language Models' Predictions with High-Impact Concepts [11.47612457613113]
概念ベースの解釈可能性手法をNLPに拡張するための完全なフレームワークを提案する。
出力予測が大幅に変化する特徴を最適化する。
本手法は, ベースラインと比較して, 予測的影響, ユーザビリティ, 忠実度に関する優れた結果が得られる。
論文 参考訳(メタデータ) (2023-05-03T14:48:27Z) - Training Language Models with Language Feedback at Scale [50.70091340506957]
我々は、より情報的な言語フィードバックを利用する新しいアプローチであるLanguage Feedback (ILF)から学習を導入する。
ILFは3つのステップから成り、まず言語モデルを入力に条件付けし、最初のLM出力を出力し、改善を生成する。
理論的には、ILFは人間からのフィードバックによる強化学習と同様、ベイズ推論とみなすことができる。
論文 参考訳(メタデータ) (2023-03-28T17:04:15Z) - Towards Improving Faithfulness in Abstractive Summarization [37.19777407790153]
本稿では,抽象的な要約における忠実度を改善するために,FES(Fithfulness Enhanced Summarization Model)を提案する。
我々のモデルはCNN/DMとXSumの実験において強いベースラインを上回ります。
論文 参考訳(メタデータ) (2022-10-04T19:52:09Z) - Avoiding Inference Heuristics in Few-shot Prompt-based Finetuning [57.4036085386653]
文ペア分類タスクのプロンプトベースモデルでは,語彙重なりに基づく推論の一般的な落とし穴が依然として残っていることを示す。
そこで,プレトレーニングウェイトを保存する正規化を加えることは,この破壊的な微調整の傾向を緩和するのに有効であることを示す。
論文 参考訳(メタデータ) (2021-09-09T10:10:29Z) - NoiER: An Approach for Training more Reliable Fine-TunedDownstream Task
Models [54.184609286094044]
補助モデルと付加データなしで問題を解くための学習パラダイムとして,ノイズエントロピー正規化(NoiER)を提案する。
提案手法は,従来の微調整モデルと比較して平均55%改善した。
論文 参考訳(メタデータ) (2021-08-29T06:58:28Z) - A Framework to Learn with Interpretation [2.3741312212138896]
本稿では,予測モデルとその関連解釈モデルを共同で学習する新しい枠組みを提案する。
我々は,選択した隠れ層の出力を入力として取り込む,高レベル属性関数の小型辞書を求める。
学習した機能を視覚化する詳細なパイプラインも開発されている。
論文 参考訳(メタデータ) (2020-10-19T09:26:28Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
モデルの予測に責任のあるトレーニング例を特定するために, k 近傍表現を提案する。
我々は,kNN表現が学習した素因関係を明らかにするのに有効であることを示す。
以上の結果から,kNN手法により,直交モデルが逆入力に対してより堅牢であることが示唆された。
論文 参考訳(メタデータ) (2020-10-18T16:55:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。