論文の概要: Randomized Pairwise Learning with Adaptive Sampling: A PAC-Bayes Analysis
- arxiv url: http://arxiv.org/abs/2504.02957v2
- Date: Tue, 08 Apr 2025 19:37:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 09:45:09.020515
- Title: Randomized Pairwise Learning with Adaptive Sampling: A PAC-Bayes Analysis
- Title(参考訳): 適応サンプリングによるランダム化ペアワイズ学習:PAC-Bayes解析
- Authors: Sijia Zhou, Yunwen Lei, Ata Kabán,
- Abstract要約: ペアワイズ学習モデルの学習のためのデータ適応型サンプリング手法を用いて最適化について検討する。
ポイントワイズ学習とペアワイズ学習の顕著な違いは、入力ペア間の統計的上昇である。
- 参考スコア(独自算出の注目度): 32.8453673919231
- License:
- Abstract: We study stochastic optimization with data-adaptive sampling schemes to train pairwise learning models. Pairwise learning is ubiquitous, and it covers several popular learning tasks such as ranking, metric learning and AUC maximization. A notable difference of pairwise learning from pointwise learning is the statistical dependencies among input pairs, for which existing analyses have not been able to handle in the general setting considered in this paper. To this end, we extend recent results that blend together two algorithm-dependent frameworks of analysis -- algorithmic stability and PAC-Bayes -- which allow us to deal with any data-adaptive sampling scheme in the optimizer. We instantiate this framework to analyze (1) pairwise stochastic gradient descent, which is a default workhorse in many machine learning problems, and (2) pairwise stochastic gradient descent ascent, which is a method used in adversarial training. All of these algorithms make use of a stochastic sampling from a discrete distribution (sample indices) before each update. Non-uniform sampling of these indices has been already suggested in the recent literature, to which our work provides generalization guarantees in both smooth and non-smooth convex problems.
- Abstract(参考訳): ペアワイズ学習モデルの学習のためのデータ適応型サンプリング手法を用いて確率的最適化について検討する。
ペアワイズ学習はユビキタスであり、ランキング、メートル法学習、AUCの最大化など、いくつかの一般的な学習タスクをカバーしている。
ポイントワイズラーニングとペアワイズラーニングの顕著な違いは、既存の分析では、本論文で考慮した一般的な設定では扱えない、入力ペア間の統計的依存関係である。
この目的のために、アルゴリズムに依存した2つの分析フレームワーク – アルゴリズムの安定性とPAC-Bayes – を組み合わせることで、オプティマイザ内のデータ適応型サンプリングスキームを処理できるように、最近の結果を拡張しています。
このフレームワークをインスタンス化して、(1)機械学習問題におけるデフォルトのワークホースである対側確率勾配降下と(2)対側確率勾配降下を解析し、(2)対側学習で用いられる方法である対側確率勾配降下を解析する。
これらのアルゴリズムはすべて、更新毎に個別分布(サンプルインデックス)から確率的なサンプリングを使用する。
これらの指標の非一様サンプリングは、スムーズな凸問題と非滑らかな凸問題の両方において一般化保証を提供する最近の文献で既に提案されている。
関連論文リスト
- Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Faster Adaptive Federated Learning [84.38913517122619]
フェデレートラーニングは分散データの出現に伴って注目を集めている。
本稿では,クロスサイロFLにおけるモーメントに基づく分散低減手法に基づく適応アルゴリズム(FAFED)を提案する。
論文 参考訳(メタデータ) (2022-12-02T05:07:50Z) - Pairwise Learning via Stagewise Training in Proximal Setting [0.0]
非平滑凸対損失関数の収束保証と、適応的なサンプルサイズとペアワイズ学習のための重要サンプリング手法を組み合わせる。
それぞれに逆のインスタンスをサンプリングすると勾配の分散が減少し、収束が加速することを示した。
論文 参考訳(メタデータ) (2022-08-08T11:51:01Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
ペアワイズ学習(Pairwise learning)とは、損失関数がペアインスタンスに依存するタスクをいう。
オンライン降下(OGD)は、ペアワイズ学習でストリーミングデータを処理する一般的なアプローチである。
本稿では,ペアワイズ学習のための手法について,シンプルでオンラインな下降を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:10:48Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Minibatch and Momentum Model-based Methods for Stochastic Non-smooth
Non-convex Optimization [3.4809730725241597]
モデルベース手法に対する2つの重要な拡張を行う。
まず,各イテレーションのモデル関数を近似するために,サンプルの集合を用いる新しいミニバッチを提案する。
第二に、運動量法の成功により、新しい凸モデルを提案する。
論文 参考訳(メタデータ) (2021-06-06T05:31:57Z) - Effective Proximal Methods for Non-convex Non-smooth Regularized
Learning [27.775096437736973]
独立サンプリング方式は、一般に使用されている一様サンプリング方式の性能を向上させる傾向にあることを示す。
我々の新しい分析は、サンプリングの速度が今までで最高のものより速いことも示しています。
論文 参考訳(メタデータ) (2020-09-14T16:41:32Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
本稿では,各ステップごとに1つのデータポイントしか必要としない2つの単一スケールシングルループアルゴリズムを提案する。
本研究の結果は, 同時一次および二重側収束の形で表される。
論文 参考訳(メタデータ) (2020-08-23T20:36:49Z) - Robust Learning Rate Selection for Stochastic Optimization via Splitting
Diagnostic [5.395127324484869]
SplitSGDは最適化のための新しい動的学習スケジュールである。
本手法は,対象関数の局所的幾何への適応性を向上するために学習率を低下させる。
基本的には標準のSGDよりも計算コストがかかるわけではない。
論文 参考訳(メタデータ) (2019-10-18T19:38:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。