論文の概要: Global-Order GFlowNets
- arxiv url: http://arxiv.org/abs/2504.02968v1
- Date: Thu, 03 Apr 2025 18:43:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:49:14.603032
- Title: Global-Order GFlowNets
- Title(参考訳): グローバルオーダーGFlowNets
- Authors: Lluís Pastor-Pérez, Javier Alonso-Garcia, Lukas Mauch,
- Abstract要約: Order-Preserving (OP) GFlowNetsは、複雑なマルチオブジェクト(MOO)ブラックボックス最適化問題に対処することに成功した。
我々は,Global-Order GFlowNetsを導入し,局所的な秩序をグローバルな秩序に変えることで,これらの対立を解決する。
- 参考スコア(独自算出の注目度): 0.36681882674260474
- License:
- Abstract: Order-Preserving (OP) GFlowNets have demonstrated remarkable success in tackling complex multi-objective (MOO) black-box optimization problems using stochastic optimization techniques. Specifically, they can be trained online to efficiently sample diverse candidates near the Pareto front. A key advantage of OP GFlowNets is their ability to impose a local order on training samples based on Pareto dominance, eliminating the need for scalarization - a common requirement in other approaches like Preference-Conditional GFlowNets. However, we identify an important limitation of OP GFlowNets: imposing a local order on training samples can lead to conflicting optimization objectives. To address this issue, we introduce Global-Order GFlowNets, which transform the local order into a global one, thereby resolving these conflicts. Our experimental evaluations on various benchmarks demonstrate the efficacy and promise of our proposed method.
- Abstract(参考訳): Order-Preserving (OP) GFlowNetsは、確率的最適化手法を用いて複雑な多目的(MOO)ブラックボックス最適化問題に対処することに成功した。
具体的には、Paretoフロント近くのさまざまな候補を効率的にサンプリングするために、オンラインでトレーニングすることができる。
OP GFlowNetsの重要な利点は、Paretoの優位性に基づいたトレーニングサンプルに局所的な順序を課すことで、スキャラライゼーションの必要性を排除できることだ。
しかし、OP GFlowNetsの重要な制限は、トレーニングサンプルに局所的な順序を付与することは、矛盾する最適化目標につながる可能性がある。
この問題に対処するため,Global-Order GFlowNetsを導入する。
評価実験により,提案手法の有効性と可能性を実証した。
関連論文リスト
- Optimizing Backward Policies in GFlowNets via Trajectory Likelihood Maximization [4.158255103170876]
GFlowNetsは、与えられた報酬関数に比例したオブジェクトのサンプルを学習する生成モデルのファミリーである。
近年の研究では,GFlowNetトレーニングとエントロピー規則化強化学習問題との密接な関係が示されている。
本稿では,エントロピー規則化マルコフ決定プロセスにおいて,値関数を直接逐次的に適用する,シンプルな後方ポリシー最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-20T19:12:14Z) - Improving GFlowNets with Monte Carlo Tree Search [6.497027864860203]
近年の研究では,GFlowNetsとエントロピー規則化強化学習の強い関係が明らかにされている。
我々はモンテカルロ木探索(MCTS)を適用してGFlowNetの計画能力を高めることを提案する。
実験により,本手法により,GFlowNetトレーニングのサンプル効率と,事前学習したGFlowNetモデルの生成精度が向上することが示された。
論文 参考訳(メタデータ) (2024-06-19T15:58:35Z) - Looking Backward: Retrospective Backward Synthesis for Goal-Conditioned GFlowNets [27.33222647437964]
Generative Flow Networks (GFlowNets) は、多種多様なハイリワード候補を生成する顕著な能力を示した。
しかし、そのようなモデルの訓練は、極めて少ない報酬のために困難である。
この問題を解決するために,textbfRetrospective textbfBackward textbfSynthesis (textbfRBS) という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-03T09:44:10Z) - Local Search GFlowNets [85.0053493167887]
Generative Flow Networks (GFlowNets) は、報酬に比例した離散オブジェクト上の分布を学習するアモータイズされたサンプリング手法である。
GFlowNetsは、多様なサンプルを生成する素晴らしい能力を示していますが、広いサンプル空間での過剰な探索のために、常に高い報酬を持つサンプルを生成するのに苦労することがあります。
本稿では,局所探索によるGFlowNetsの学習を提案する。
論文 参考訳(メタデータ) (2023-10-04T10:27:17Z) - Thompson sampling for improved exploration in GFlowNets [75.89693358516944]
生成フローネットワーク(Generative Flow Networks, GFlowNets)は、合成対象物上の分布からのサンプリングを、学習可能なアクションポリシーを用いたシーケンシャルな意思決定問題として扱う、アモータイズされた変分推論アルゴリズムである。
2つの領域において、TS-GFNは、過去の研究で使われたオフ・ポリティクス・サーベイ・ストラテジーよりも、探索を改善し、目標分布への収束を早くすることを示す。
論文 参考訳(メタデータ) (2023-06-30T14:19:44Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
組合せ最適化(CO)問題はしばしばNPハードであり、正確なアルゴリズムには及ばない。
GFlowNetsは、複合非正規化密度を逐次サンプリングする強力な機械として登場した。
本稿では,異なる問題に対してマルコフ決定プロセス(MDP)を設計し,条件付きGFlowNetを学習して解空間からサンプルを作成することを提案する。
論文 参考訳(メタデータ) (2023-05-26T15:13:09Z) - Stochastic Generative Flow Networks [89.34644133901647]
生成フローネットワーク(GFlowNets)は「制御としての推論」のレンズを通して複雑な構造をサンプリングすることを学ぶ
既存のGFlowNetsは決定論的環境にのみ適用でき、動的処理によるより一般的なタスクではフェールする。
本稿では,GFlowNetsを環境に拡張する新しいアルゴリズムであるGFlowNetsを紹介する。
論文 参考訳(メタデータ) (2023-02-19T03:19:40Z) - Distributional GFlowNets with Quantile Flows [73.73721901056662]
Generative Flow Networks(GFlowNets)は、エージェントが一連の意思決定ステップを通じて複雑な構造を生成するためのポリシーを学ぶ確率的サンプルの新たなファミリーである。
本研究では,GFlowNetの分散パラダイムを採用し,各フロー関数を分散化し,学習中により情報的な学習信号を提供する。
GFlowNet学習アルゴリズムは,リスク不確実性のあるシナリオを扱う上で不可欠な,リスクに敏感なポリシーを学習することができる。
論文 参考訳(メタデータ) (2023-02-11T22:06:17Z) - Learning GFlowNets from partial episodes for improved convergence and
stability [56.99229746004125]
生成フローネットワーク(GFlowNets)は、非正規化対象密度の下で離散オブジェクトのシーケンシャルサンプリングを訓練するアルゴリズムである。
GFlowNetsの既存のトレーニング目的は、状態または遷移に局所的であるか、あるいはサンプリング軌道全体にわたって報酬信号を伝達する。
強化学習におけるTD($lambda$)アルゴリズムにインスパイアされたサブトラジェクティブバランス(subtrajectory balance, SubTB($lambda$)を導入する。
論文 参考訳(メタデータ) (2022-09-26T15:44:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。