Extending CREAMT: Leveraging Large Language Models for Literary Translation Post-Editing
- URL: http://arxiv.org/abs/2504.03045v1
- Date: Thu, 03 Apr 2025 21:48:09 GMT
- Title: Extending CREAMT: Leveraging Large Language Models for Literary Translation Post-Editing
- Authors: Antonio Castaldo, Sheila Castilho, Joss Moorkens, Johanna Monti,
- Abstract summary: This study evaluates the feasibility of post-editing literary translations generated by large language models (LLMs)<n>Our results indicate that post-editing LLM-generated translations significantly reduces editing time compared to human translation while maintaining a similar level of creativity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Post-editing machine translation (MT) for creative texts, such as literature, requires balancing efficiency with the preservation of creativity and style. While neural MT systems struggle with these challenges, large language models (LLMs) offer improved capabilities for context-aware and creative translation. This study evaluates the feasibility of post-editing literary translations generated by LLMs. Using a custom research tool, we collaborated with professional literary translators to analyze editing time, quality, and creativity. Our results indicate that post-editing LLM-generated translations significantly reduces editing time compared to human translation while maintaining a similar level of creativity. The minimal difference in creativity between PE and MT, combined with substantial productivity gains, suggests that LLMs may effectively support literary translators working with high-resource languages.
Related papers
- Bridging the Linguistic Divide: A Survey on Leveraging Large Language Models for Machine Translation [33.08089616645845]
The advent of Large Language Models (LLMs) has significantly reshaped the landscape of machine translation (MT)<n>We analyze techniques such as few-shot prompting, cross-lingual transfer, and parameter-efficient fine-tuning that enable effective adaptation to under-resourced settings.<n>We discuss persistent challenges such as hallucinations, evaluation inconsistencies, and inherited biases while also evaluating emerging LLM-driven metrics for translation quality.
arXiv Detail & Related papers (2025-04-02T17:26:40Z) - Lost in Literalism: How Supervised Training Shapes Translationese in LLMs [51.04435855143767]
Large language models (LLMs) have achieved remarkable success in machine translation.<n>However, translationese, characterized by overly literal and unnatural translations, remains a persistent challenge.<n>We introduce methods to mitigate these biases, including polishing golden references and filtering unnatural training instances.
arXiv Detail & Related papers (2025-03-06T12:14:45Z) - Speech Translation Refinement using Large Language Models [8.602429274223693]
This paper investigates how large language models (LLMs) can improve the performance of speech translation by introducing a joint refinement process.
Through the joint refinement of speech translation (ST) and automatic speech recognition (ASR) transcription via LLMs, the performance of the ST model is significantly improved.
Experimental results on the MuST-C and CoVoST 2 datasets, which include seven translation tasks, demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2025-01-25T05:32:42Z) - Exploring Large Language Models for Translating Romanian Computational Problems into English [0.0]
This study shows that robust large language models (LLMs) can maintain or even enhance their performance in translating less common languages when given well-structured prompts.<n>We evaluate several translation methods across multiple LLMs, including OpenRoLLM, Llama 3.1 8B, Llama 3.2 3B and GPT-4o.
arXiv Detail & Related papers (2025-01-09T22:17:44Z) - LLM-based Translation Inference with Iterative Bilingual Understanding [52.46978502902928]
We propose a novel Iterative Bilingual Understanding Translation method based on the cross-lingual capabilities of large language models (LLMs)<n>The cross-lingual capability of LLMs enables the generation of contextual understanding for both the source and target languages separately.<n>The proposed IBUT outperforms several strong comparison methods.
arXiv Detail & Related papers (2024-10-16T13:21:46Z) - (Perhaps) Beyond Human Translation: Harnessing Multi-Agent Collaboration for Translating Ultra-Long Literary Texts [52.18246881218829]
We introduce a novel multi-agent framework based on large language models (LLMs) for literary translation, implemented as a company called TransAgents.
To evaluate the effectiveness of our system, we propose two innovative evaluation strategies: Monolingual Human Preference (MHP) and Bilingual LLM Preference (BLP)
arXiv Detail & Related papers (2024-05-20T05:55:08Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
Off-target translation remains an unsolved problem, especially for low-resource languages.
Recent works have either designed advanced prompting strategies to highlight the functionality of translation instructions or exploited the in-context learning ability of LLMs.
In this work, we design a two-stage fine-tuning algorithm to improve the instruction-following ability (especially the translation direction) of LLMs.
arXiv Detail & Related papers (2024-03-21T13:47:40Z) - MT-PATCHER: Selective and Extendable Knowledge Distillation from Large Language Models for Machine Translation [61.65537912700187]
Large Language Models (LLM) have demonstrated their strong ability in the field of machine translation (MT)
We propose a framework called MT-Patcher, which transfers knowledge from LLMs to existing MT models in a selective, comprehensive and proactive manner.
arXiv Detail & Related papers (2024-03-14T16:07:39Z) - Machine Translation with Large Language Models: Prompt Engineering for
Persian, English, and Russian Directions [0.0]
Generative large language models (LLMs) have demonstrated exceptional proficiency in various natural language processing (NLP) tasks.
We conducted an investigation into two popular prompting methods and their combination, focusing on cross-language combinations of Persian, English, and Russian.
arXiv Detail & Related papers (2024-01-16T15:16:34Z) - Improving Machine Translation with Large Language Models: A Preliminary Study with Cooperative Decoding [73.32763904267186]
Large Language Models (LLMs) present the potential for achieving superior translation quality.
We propose Cooperative Decoding (CoDec) which treats NMT systems as a pretranslation model and MT-oriented LLMs as a supplemental solution.
arXiv Detail & Related papers (2023-11-06T03:41:57Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z) - Creativity in translation: machine translation as a constraint for
literary texts [3.3453601632404073]
This article presents the results of a study involving the translation of a short story by Kurt Vonnegut from English to Catalan and Dutch using three modalities: machine-translation (MT), post-editing (PE) and translation without aid (HT)
A neural MT system trained on literary data does not currently have the necessary capabilities for a creative translation; it renders literal solutions to translation problems.
More importantly, using MT to post-edit raw output constrains the creativity of translators, resulting in a poorer translation often not fit for publication, according to experts.
arXiv Detail & Related papers (2022-04-12T09:27:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.