Cooperative Inference for Real-Time 3D Human Pose Estimation in Multi-Device Edge Networks
- URL: http://arxiv.org/abs/2504.03052v1
- Date: Thu, 03 Apr 2025 21:58:29 GMT
- Title: Cooperative Inference for Real-Time 3D Human Pose Estimation in Multi-Device Edge Networks
- Authors: Hyun-Ho Choi, Kangsoo Kim, Ki-Ho Lee, Kisong Lee,
- Abstract summary: This study proposes a novel cooperative inference method for real-time 3D human pose estimation in mobile edge computing networks.<n>We numerically analyze the performance of the proposed inference method in terms of the inference accuracy and end-to-end delay.
- Score: 9.37715274700407
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurate and real-time three-dimensional (3D) pose estimation is challenging in resource-constrained and dynamic environments owing to its high computational complexity. To address this issue, this study proposes a novel cooperative inference method for real-time 3D human pose estimation in mobile edge computing (MEC) networks. In the proposed method, multiple end devices equipped with lightweight inference models employ dual confidence thresholds to filter ambiguous images. Only the filtered images are offloaded to an edge server with a more powerful inference model for re-evaluation, thereby improving the estimation accuracy under computational and communication constraints. We numerically analyze the performance of the proposed inference method in terms of the inference accuracy and end-to-end delay and formulate a joint optimization problem to derive the optimal confidence thresholds and transmission time for each device, with the objective of minimizing the mean per-joint position error (MPJPE) while satisfying the required end-to-end delay constraint. To solve this problem, we demonstrate that minimizing the MPJPE is equivalent to maximizing the sum of the inference accuracies for all devices, decompose the problem into manageable subproblems, and present a low-complexity optimization algorithm to obtain a near-optimal solution. The experimental results show that a trade-off exists between the MPJPE and end-to-end delay depending on the confidence thresholds. Furthermore, the results confirm that the proposed cooperative inference method achieves a significant reduction in the MPJPE through the optimal selection of confidence thresholds and transmission times, while consistently satisfying the end-to-end delay requirement in various MEC environments.
Related papers
- Training Latency Minimization for Model-Splitting Allowed Federated Edge
Learning [16.8717239856441]
We propose a model-splitting allowed FL (SFL) framework to alleviate the shortage of computing power faced by clients in training deep neural networks (DNNs) using federated learning (FL)
Under the synchronized global update setting, the latency to complete a round of global training is determined by the maximum latency for the clients to complete a local training session.
To solve this mixed integer nonlinear programming problem, we first propose a regression method to fit the quantitative-relationship between the cut-layer and other parameters of an AI-model, and thus, transform the TLMP into a continuous problem.
arXiv Detail & Related papers (2023-07-21T12:26:42Z) - Gradient Sparsification for Efficient Wireless Federated Learning with
Differential Privacy [25.763777765222358]
Federated learning (FL) enables distributed clients to collaboratively train a machine learning model without sharing raw data with each other.
As the model size grows, the training latency due to limited transmission bandwidth and private information degrades while using differential privacy (DP) protection.
We propose sparsification empowered FL framework wireless channels, in over to improve training efficiency without sacrificing convergence performance.
arXiv Detail & Related papers (2023-04-09T05:21:15Z) - Accuracy-Guaranteed Collaborative DNN Inference in Industrial IoT via
Deep Reinforcement Learning [10.223526707269537]
Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services.
In this paper, we investigate the collaborative inference problem in industrial IoT networks.
arXiv Detail & Related papers (2022-12-31T05:53:17Z) - Design and Prototyping Distributed CNN Inference Acceleration in Edge
Computing [85.74517957717363]
HALP accelerates inference by designing a seamless collaboration among edge devices (EDs) in Edge Computing.
Experiments show that the distributed inference HALP achieves 1.7x inference acceleration for VGG-16.
It is shown that the model selection with distributed inference HALP can significantly improve service reliability.
arXiv Detail & Related papers (2022-11-24T19:48:30Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
We propose a tiny deep neural network of which partial layers are iteratively exploited for refining its previous estimations.
We employ learned gating criteria to decide whether to exit from the weight-sharing loop, allowing per-sample adaptation in our model.
Our method consistently outperforms state-of-the-art 2D/3D hand pose estimation approaches in terms of both accuracy and efficiency for widely used benchmarks.
arXiv Detail & Related papers (2021-11-11T23:31:34Z) - Communication-Computation Efficient Device-Edge Co-Inference via AutoML [4.06604174802643]
Device-edge co-inference partitions a deep neural network between a resource-constrained mobile device and an edge server.
On-device model sparsity level and intermediate feature compression ratio have direct impacts on workload and communication overhead.
We propose a novel automated machine learning (AutoML) framework based on deep reinforcement learning (DRL)
arXiv Detail & Related papers (2021-08-30T06:36:30Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
We propose a design paradigm for cost-effective network with LR representation for efficient pose estimation, named FasterPose.
We study the training behavior of FasterPose, and formulate a novel regressive cross-entropy (RCE) loss function for accelerating the convergence.
Compared with the previously dominant network of pose estimation, our method reduces 58% of the FLOPs and simultaneously gains 1.3% improvement of accuracy.
arXiv Detail & Related papers (2021-07-07T13:39:08Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
We propose an efficient method for computing the partition function or MAP estimate in a pairwise MRF.
We extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and develop a compact semidefinite relaxation that can again be solved efficiently using the solver.
arXiv Detail & Related papers (2020-12-04T15:36:29Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.