論文の概要: Classic Video Denoising in a Machine Learning World: Robust, Fast, and Controllable
- arxiv url: http://arxiv.org/abs/2504.03136v1
- Date: Fri, 04 Apr 2025 03:03:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:48:21.953544
- Title: Classic Video Denoising in a Machine Learning World: Robust, Fast, and Controllable
- Title(参考訳): 機械学習の世界におけるクラシックビデオのデノイング:ロバストで高速で制御可能な
- Authors: Xin Jin, Simon Niklaus, Zhoutong Zhang, Zhihao Xia, Chunle Guo, Yuting Yang, Jiawen Chen, Chongyi Li,
- Abstract要約: 従来の手法に基づく微分可能なデノナイズパイプラインを提案する。
その後、ニューラルネットワークがトレーニングされ、各入力に対して最適なdenoisingパラメータが予測される。
- 参考スコア(独自算出の注目度): 44.2863084585486
- License:
- Abstract: Denoising is a crucial step in many video processing pipelines such as in interactive editing, where high quality, speed, and user control are essential. While recent approaches achieve significant improvements in denoising quality by leveraging deep learning, they are prone to unexpected failures due to discrepancies between training data distributions and the wide variety of noise patterns found in real-world videos. These methods also tend to be slow and lack user control. In contrast, traditional denoising methods perform reliably on in-the-wild videos and run relatively quickly on modern hardware. However, they require manually tuning parameters for each input video, which is not only tedious but also requires skill. We bridge the gap between these two paradigms by proposing a differentiable denoising pipeline based on traditional methods. A neural network is then trained to predict the optimal denoising parameters for each specific input, resulting in a robust and efficient approach that also supports user control.
- Abstract(参考訳): ハイクオリティ、スピード、ユーザコントロールが不可欠であるインタラクティブ編集など、多くのビデオ処理パイプラインにおいて、Denoisingは重要なステップである。
近年のアプローチでは,ディープラーニングを利用して品質を劣化させる方法が大幅に改善されているが,トレーニングデータ分布と実世界のビデオに見られる様々なノイズパターンの相違により,予期せぬ失敗が生じる傾向にある。
これらのメソッドは遅く、ユーザコントロールが欠如する傾向があります。
対照的に、従来の denoising メソッドは、Wild ビデオ上で確実に動作し、モダンなハードウェア上で比較的高速に動作します。
しかし、それらは各入力ビデオのパラメータを手動で調整する必要がある。
この2つのパラダイム間のギャップを、従来の方法に基づいた微分可能なデノベーションパイプラインを提案して埋めます。
ニューラルネットワークは、各入力に対して最適なdenoisingパラメータを予測するようにトレーニングされ、結果として、ユーザコントロールもサポートする堅牢で効率的なアプローチが実現される。
関連論文リスト
- Temporal As a Plugin: Unsupervised Video Denoising with Pre-Trained Image Denoisers [30.965705043127144]
本稿では,TAP (Temporal As aTAP) という,教師なしのビデオデノベーションフレームワークを提案する。
時間的加群を組み込むことで、ノイズの多いフレームをまたがる時間的情報を活用することができ、空間的 denoising のパワーを補完することができる。
他の教師なしビデオ復号化手法と比較して,本フレームワークは,SRGBと生ビデオ復号化データセットの両方において優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-17T15:05:33Z) - Real-time Controllable Denoising for Image and Video [44.68523669975698]
コントロール可能なイメージデノゲーションは、人間の先行したクリーンなサンプルを生成し、シャープさと滑らかさのバランスをとることを目的としている。
本稿では,最初のディープ・イメージ・ビデオ・デノナイズ・パイプラインであるReal-time Controllable Denoising (RCD)を紹介する。
RCDは、任意のdenoisingレベルをリアルタイムに編集するための、完全に制御可能なユーザインターフェースを提供する。
論文 参考訳(メタデータ) (2023-03-29T03:10:28Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
本稿では,デノナイジングネットワークの一般化性能を高めるための新しい手法を提案する。
提案手法では,入力画像のランダムなピクセルをマスキングし,学習中に欠落した情報を再構成する。
提案手法は,他のディープラーニングモデルよりも優れた一般化能力を示し,実世界のシナリオに直接適用可能である。
論文 参考訳(メタデータ) (2023-03-23T09:33:44Z) - Learning Task-Oriented Flows to Mutually Guide Feature Alignment in
Synthesized and Real Video Denoising [137.5080784570804]
Video Denoisingは、クリーンなノイズを回復するためにビデオからノイズを取り除くことを目的としている。
既存の研究によっては、近辺のフレームから追加の空間的時間的手がかりを利用することで、光学的流れがノイズ発生の助けとなることが示されている。
本稿では,様々なノイズレベルに対してより堅牢なマルチスケール光フロー誘導型ビデオデノイング法を提案する。
論文 参考訳(メタデータ) (2022-08-25T00:09:18Z) - Real-time Streaming Video Denoising with Bidirectional Buffers [48.57108807146537]
リアルタイムDenoisingアルゴリズムは、通常、ビデオストリームの撮影と送信にかかわるノイズを取り除くために、ユーザーデバイスに採用されている。
最近のマルチアウトプット推論は、双方向の時間的特徴を並列または繰り返しのフレームワークで伝達する。
本研究では,過去と未来の両方の時間的受容場を持つストリーミングビデオに対して,高忠実度リアルタイムデノナイズを実現するための双方向ストリーミングビデオデノナイズフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-14T14:01:03Z) - Noise2Kernel: Adaptive Self-Supervised Blind Denoising using a Dilated
Convolutional Kernel Architecture [3.796436257221662]
本研究では,不変性を満たす拡張畳み込みネットワークを提案し,ランダムマスキングを使わずに効率的なカーネルベーストレーニングを実現する。
また,ゼロ平均制約を回避し,塩とペッパーまたはハイブリッドノイズの除去に有効である適応型自己超過損失を提案する。
論文 参考訳(メタデータ) (2020-12-07T12:13:17Z) - Learning Model-Blind Temporal Denoisers without Ground Truths [46.778450578529814]
合成データで訓練されたデノイザーは、未知のノイズの多様性に対処できないことが多い。
従来の画像ベース手法は、ビデオデノイザに直接適用した場合、ノイズが過度に収まる。
本稿では,これらの課題に対処する上で有効な,ビデオ・デノベーション・ネットワークの汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-07T07:19:48Z) - Self-Supervised Fast Adaptation for Denoising via Meta-Learning [28.057705167363327]
本稿では,最先端の教師付き復調手法を大幅に上回る新しい復調手法を提案する。
提案手法は, パラメータを追加することなく, 最先端の復調ネットワークに容易に適用可能であることを示す。
論文 参考訳(メタデータ) (2020-01-09T09:40:53Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
ブラインド画像のデノイングはコンピュータビジョンにおいて重要な問題であるが、非常に難しい問題である。
本稿では,ノイズ推定と画像デノーミングを併用した新しい変分推論手法を提案する。
論文 参考訳(メタデータ) (2019-08-29T15:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。