Dynamically near-stable two-mode squeezing in optomechanical systems
- URL: http://arxiv.org/abs/2504.03247v2
- Date: Tue, 08 Apr 2025 09:32:26 GMT
- Title: Dynamically near-stable two-mode squeezing in optomechanical systems
- Authors: Shi-fan Qi,
- Abstract summary: Two-mode squeezed states are paradigmatic entangled states with broad applications in quantum information processing and metrology.<n>We propose a two-mode squeezing scheme within a hybrid three-mode cavity optomechanical system.<n>We provide a rigorous theoretical solution for the process of squeezing generation within the open-quantum-system framework.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Bosonic two-mode squeezed states are paradigmatic entangled states with broad applications in quantum information processing and metrology. In this work, we propose a two-mode squeezing scheme within a hybrid three-mode cavity optomechanical system, wherein a mechanical resonator is coupled to two microwave (or optical) photon modes. By applying and modulating strong driving pulses to the photon modes, we construct an effective Hamiltonian that describes two-photon squeezing mediated by the mechanical mode. This effective Hamiltonian is validated through the diagonalization of the system's Liouvillian superoperator. With the effective Hamiltonian, we provide a rigorous theoretical solution for the dynamical process of squeezing generation within the open-quantum-system framework. Our analysis reveals that stable two-mode squeezing can be obtained by optimizing the squeezing quadrature operator, even in unstable system dynamics. Moreover, the squeezing level can surpass the maximum achievable under stable system conditions. Our work provides an extendable approach for generating two-mode squeezed states between indirectly coupled Gaussian modes.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Kerr-magnon-assisted asymptotic stationary photon-phonon squeezing [0.0]
Two-mode squeezed states are paradigmatic entangled states in continuous variable systems.<n>We propose a photon-phonon squeezing protocol assisted by a Kerr magnon within a hybrid cavity magnomechanical system.
arXiv Detail & Related papers (2024-09-03T04:14:15Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Engineering biphoton spectral wavefunction in a silicon micro-ring resonator with split resonances [21.14676162428423]
Control of frequency-time amplitude of a photon's electric field has been demonstrated on platforms with second-order optical nonlinearity.
Here, we demonstrate a cavity-enhanced photon-pair source that can generate both separable states and controllable entangled states.
Experiments and simulations demonstrate the capacity to manipulate the frequency-domain wavefunction in a silicon-based device.
arXiv Detail & Related papers (2024-08-24T14:23:21Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Coherent Control of an Optical Quantum Dot Using Phonons and Photons [5.1635749330879905]
We describe unique features and advantages of optical two-level systems, or qubits, for optomechanics.
The qubit state can be coherently controlled using both phonons and resonant or detuned photons.
Time-correlated single-photon counting measurements reveal the control of QD population dynamics.
arXiv Detail & Related papers (2024-04-02T16:25:35Z) - Entangling two exciton modes using exciton optomechanics [4.561414434532408]
We propose to entangle two exciton modes in an exciton-optomechanics system.
The protocol is within reach of current technology and may become a promising approach for preparing excitonic entanglement.
arXiv Detail & Related papers (2024-02-05T04:07:20Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - High-efficiency entanglement of microwave fields in cavity
opto-magnomechanical systems [5.895527084596321]
We show a scheme to realize high-efficiency entanglement of two microwave fields in a dual opto-magnomechanical system.
The proposed scheme provides a new mechanism to generate entangled microwave fields via magnons.
arXiv Detail & Related papers (2023-01-07T08:38:23Z) - Dissipative generation of significant amount of photon-phonon asymmetric
steering in magnomechanical interfaces [4.352482759052892]
We propose an effective approach for generating significant amount of entanglement and asymmetric steering between photon and phonon in a cavity magnomechanical system.
In particular, strong two-way and one-way asymmetric quantum steering between the photon and phonon modes can be obtained with even equal dissipation.
arXiv Detail & Related papers (2022-01-22T05:29:02Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Quantum Simulation of Tunable and Ultrastrong Mixed-Optomechanics [0.0]
We show that the mixed-optomechanical interactions can enter the single-photon strong-coupling and even ultrastrong-coupling regimes.
The thermal noise of the driven mode can be totally suppressed by introducing a proper squeezed vacuum bath.
This work will pave the way to the observation and application of ultrastrong optomechanical effects in quantum simulators.
arXiv Detail & Related papers (2021-01-25T08:01:06Z) - Quantum simulation of a three-mode optomechanical system based on the
Fredkin-type interaction [5.001893748063371]
We show how to generate entangled-cat states of the mechanical-like modes using the conditional displacement mechanism.
The quantum coherence effects in the generated states are investigated by calculating two-mode joint Wigner function and quantum entanglement.
arXiv Detail & Related papers (2020-12-17T11:56:04Z) - Optimal non-classical correlations of light with a levitated nano-sphere [34.82692226532414]
Nonclassical correlations provide a resource for many applications in quantum technology.
Optomechanical systems can generate nonclassical correlations between the mechanical mode and a mode of travelling light.
We propose automated optimization of the production of quantum correlations in such a system.
arXiv Detail & Related papers (2020-06-26T15:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.