論文の概要: Do Large Language Models Solve the Problems of Agent-Based Modeling? A Critical Review of Generative Social Simulations
- arxiv url: http://arxiv.org/abs/2504.03274v1
- Date: Fri, 04 Apr 2025 08:48:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:47:31.840270
- Title: Do Large Language Models Solve the Problems of Agent-Based Modeling? A Critical Review of Generative Social Simulations
- Title(参考訳): エージェント・ベース・モデリングの課題は大規模言語モデルで解決されるか? : 生成型社会シミュレーションの批判的レビュー
- Authors: Maik Larooij, Petter Törnberg,
- Abstract要約: 生成型ABMはマクロレベルのパターンとマイクロレベルの相互作用をブリッジする手段を提供する。
彼らは長い間、社会科学者からの批判に直面しており、現実主義の欠如、計算の複雑さ、経験的データに対する校正と検証の難しさを指摘した。
本稿は、このアプローチが長年にわたる批判にどのように対処するかを評価するために、生成的ABM文献をレビューする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recent advancements in AI have reinvigorated Agent-Based Models (ABMs), as the integration of Large Language Models (LLMs) has led to the emergence of ``generative ABMs'' as a novel approach to simulating social systems. While ABMs offer means to bridge micro-level interactions with macro-level patterns, they have long faced criticisms from social scientists, pointing to e.g., lack of realism, computational complexity, and challenges of calibrating and validating against empirical data. This paper reviews the generative ABM literature to assess how this new approach adequately addresses these long-standing criticisms. Our findings show that studies show limited awareness of historical debates. Validation remains poorly addressed, with many studies relying solely on subjective assessments of model `believability', and even the most rigorous validation failing to adequately evidence operational validity. We argue that there are reasons to believe that LLMs will exacerbate rather than resolve the long-standing challenges of ABMs. The black-box nature of LLMs moreover limit their usefulness for disentangling complex emergent causal mechanisms. While generative ABMs are still in a stage of early experimentation, these findings question of whether and how the field can transition to the type of rigorous modeling needed to contribute to social scientific theory.
- Abstract(参考訳): AIの最近の進歩は、エージェントベースモデル(ABM)を活性化させ、大規模言語モデル(LLM)の統合は、社会システムをシミュレートする新しいアプローチとして「世代的ABM」の出現につながった。
ABMはマクロレベルのパターンとマイクロレベルの相互作用をブリッジする手段を提供するが、社会科学者からの批判に直面し、例えば、現実主義の欠如、計算の複雑さ、経験的データに対する校正と検証の課題を指摘した。
本稿は、このアプローチが長年にわたる批判にどのように対処するかを評価するために、生成的ABM文献をレビューする。
以上の結果から,研究は歴史的議論の認知度に限界があることが示唆された。
検証は依然として不十分であり、多くの研究はモデル「信頼性」の主観的な評価にのみ依存しており、最も厳格な検証でさえも運用上の妥当性を適切に証明できていない。
我々は、LLMがABMの長年の課題を解決するのではなく、さらに悪化すると考える理由があると論じている。
LLMのブラックボックスの性質は、複雑な創発因性因果機構を混在させるための有用性を制限している。
生成的ABMはまだ初期の実験段階にあるが、これらの発見は、この分野が社会科学的理論に寄与するために必要な厳密なモデリングのタイプにどのように移行できるかを疑問視している。
関連論文リスト
- Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
ベンチマークはさまざまなバイアス、アーティファクト、リークに悩まされている。
モデルは、調査の不十分な障害モードのため、信頼できない振る舞いをする可能性がある。
因果関係はこれらの課題を体系的に解決するための 理想的な枠組みを提供します
論文 参考訳(メタデータ) (2025-02-07T17:01:37Z) - Calling a Spade a Heart: Gaslighting Multimodal Large Language Models via Negation [65.92001420372007]
本稿では,様々なベンチマークにおいて最先端MLLMを体系的に評価する。
本稿では,MLLMの脆弱性を否定的議論に対して評価するために設計された,最初のベンチマークであるGaslightingBenchを紹介する。
論文 参考訳(メタデータ) (2025-01-31T10:37:48Z) - A Debate-Driven Experiment on LLM Hallucinations and Accuracy [7.821303946741665]
本研究では,大規模言語モデル(LLM)における幻覚現象について検討する。
GPT-4o-Miniモデルの複数のインスタンスは、TrathfulQAデータセットからの質問によって引き起こされた議論のような相互作用に関与している。
1つのモデルは、もっともらしいが偽の答えを生成するように故意に指示され、他のモデルは真に応答するように要求される。
論文 参考訳(メタデータ) (2024-10-25T11:41:27Z) - Causality for Large Language Models [37.10970529459278]
数十億または数兆のパラメータを持つ大規模言語モデル(LLM)は、膨大なデータセットでトレーニングされており、一連の言語タスクで前例のない成功を収めている。
近年の研究では、LLMは因果オウムとして機能し、因果知識を真に理解したり応用したりすることなくリサイクリングすることができることが強調されている。
本調査は, ライフサイクルのすべての段階において, 因果性がどのようにLCMを強化するかを検討することを目的としている。
論文 参考訳(メタデータ) (2024-10-20T07:22:23Z) - GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
我々はtextitGenSim と呼ばれる新しい大規模言語モデル (LLM) ベースのシミュレーションプラットフォームを提案する。
我々のプラットフォームは10万のエージェントをサポートし、現実世界のコンテキストで大規模人口をシミュレートする。
我々の知る限り、GenSimは汎用的で大規模で修正可能な社会シミュレーションプラットフォームに向けた最初の一歩である。
論文 参考訳(メタデータ) (2024-10-06T05:02:23Z) - Does Reasoning Emerge? Examining the Probabilities of Causation in Large Language Models [6.922021128239465]
AIの最近の進歩は、大規模言語モデル(LLM)の能力によって推進されている。
本稿では,LLMが実世界の推論機構をいかに効果的に再現できるかを評価することを目的とした,理論的かつ実用的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-15T15:19:11Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Simulating Opinion Dynamics with Networks of LLM-based Agents [7.697132934635411]
本稿では,Large Language Models (LLMs) の集団に基づく意見力学のシミュレーション手法を提案する。
以上の結果から, LLMエージェントの正確な情報生成に対するバイアスが強く, シミュレーションエージェントが科学的現実に一致していることが明らかとなった。
しかし、素早い工学を通して確認バイアスを誘導した後、既存のエージェント・ベース・モデリングや意見ダイナミクス研究と並んで意見の断片化を観察した。
論文 参考訳(メタデータ) (2023-11-16T07:01:48Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Survey of Social Bias in Vision-Language Models [65.44579542312489]
調査の目的は、NLP、CV、VLをまたいだ事前学習モデルにおける社会バイアス研究の類似点と相違点について、研究者に高いレベルの洞察を提供することである。
ここで提示された発見とレコメンデーションはMLコミュニティの利益となり、公平でバイアスのないAIモデルの開発を促進する。
論文 参考訳(メタデータ) (2023-09-24T15:34:56Z) - Understanding Social Reasoning in Language Models with Language Models [34.068368860882586]
本稿では,因果テンプレートを投入することにより,Large Language Models (LLM) による評価を生成する新しいフレームワークを提案する。
LLMのための新しいソーシャル推論ベンチマーク(BigToM)を作成し、25のコントロールと5000のモデル記述評価からなる。
ヒトの被験者は、これまでのクラウドソースによる評価よりもベンチマークの質を高く評価し、専門家による評価に匹敵することがわかった。
論文 参考訳(メタデータ) (2023-06-21T16:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。