Policy Optimization Algorithms in a Unified Framework
- URL: http://arxiv.org/abs/2504.03328v1
- Date: Fri, 04 Apr 2025 10:14:01 GMT
- Title: Policy Optimization Algorithms in a Unified Framework
- Authors: Shuang Wu,
- Abstract summary: Generalized ergodicity theory sheds light on the steady-state behavior of processes.<n>Perturbation analysis provides insights into the fundamental principles of policy optimization algorithms.<n>We aim to make policy optimization algorithms more accessible and reduce their misuse in practice.
- Score: 7.942953533690871
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Policy optimization algorithms are crucial in many fields but challenging to grasp and implement, often due to complex calculations related to Markov decision processes and varying use of discount and average reward setups. This paper presents a unified framework that applies generalized ergodicity theory and perturbation analysis to clarify and enhance the application of these algorithms. Generalized ergodicity theory sheds light on the steady-state behavior of stochastic processes, aiding understanding of both discounted and average rewards. Perturbation analysis provides in-depth insights into the fundamental principles of policy optimization algorithms. We use this framework to identify common implementation errors and demonstrate the correct approaches. Through a case study on Linear Quadratic Regulator problems, we illustrate how slight variations in algorithm design affect implementation outcomes. We aim to make policy optimization algorithms more accessible and reduce their misuse in practice.
Related papers
- Optimistic Algorithms for Adaptive Estimation of the Average Treatment Effect [36.25361703897723]
Recent advances in martingale theory have paved the way for adaptive methods that can enhance the power of downstream inference.<n>We study adaptive sampling procedures that take advantage of optimalally optimal causal inference procedures.<n>Our findings mark a step forward in advancing adaptive causal inference methods in theory and practice.
arXiv Detail & Related papers (2025-02-07T05:39:32Z) - e-COP : Episodic Constrained Optimization of Policies [12.854752753529151]
We present the first policy optimization algorithm for constrained Reinforcement Learning (RL) in episodic (finite horizon) settings.<n>We show that our algorithm has similar or better performance than SoTA (non-episodic) algorithms adapted for the episodic setting.
arXiv Detail & Related papers (2024-06-13T20:12:09Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Bayesian Design Principles for Frequentist Sequential Learning [11.421942894219901]
We develop a theory to optimize the frequentist regret for sequential learning problems.
We propose a novel optimization approach to generate "algorithmic beliefs" at each round.
We present a novel algorithm for multi-armed bandits that achieves the "best-of-all-worlds" empirical performance.
arXiv Detail & Related papers (2023-10-01T22:17:37Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Instance-Dependent Confidence and Early Stopping for Reinforcement
Learning [99.57168572237421]
Various algorithms for reinforcement learning (RL) exhibit dramatic variation in their convergence rates as a function of problem structure.
This research provides guarantees that explain textitex post the performance differences observed.
A natural next step is to convert these theoretical guarantees into guidelines that are useful in practice.
arXiv Detail & Related papers (2022-01-21T04:25:35Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Causal Policy Gradients [6.123324869194195]
Causal policy gradients (CPGs) provide a common framework for analysing key state-of-the-art algorithms.
CPGs are shown to generalise traditional policy gradients, and yield a principled way of incorporating prior knowledge of a problem domain's generative processes.
arXiv Detail & Related papers (2021-02-20T14:51:12Z) - Metaheuristic optimization of power and energy systems: underlying
principles and main issues of the 'rush to heuristics' [0.0]
This paper considers the applications to power and energy systems.
A set of underlying principles that characterize the metaheuristic algorithms is presented.
The customization of metaheuristic algorithms to fit the constraints of specific problems is discussed.
arXiv Detail & Related papers (2020-08-17T17:33:51Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.