FLAIRBrainSeg: Fine-grained brain segmentation using FLAIR MRI only
- URL: http://arxiv.org/abs/2504.03376v1
- Date: Fri, 04 Apr 2025 11:47:18 GMT
- Title: FLAIRBrainSeg: Fine-grained brain segmentation using FLAIR MRI only
- Authors: Edern Le Bot, Rémi Giraud, Boris Mansencal, Thomas Tourdias, Josè V. Manjon, Pierrick Coupé,
- Abstract summary: This paper introduces a novel method for brain segmentation using only FLAIR MRIs.<n>By leveraging existing automatic segmentation methods, we train a network to approximate segmentations, typically obtained from T1-weighted MRIs.<n>Our method, called FLAIRBrainSeg, produces segmentations of 132 structures and is robust to multiple sclerosis lesions.
- Score: 0.5277756703318045
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a novel method for brain segmentation using only FLAIR MRIs, specifically targeting cases where access to other imaging modalities is limited. By leveraging existing automatic segmentation methods, we train a network to approximate segmentations, typically obtained from T1-weighted MRIs. Our method, called FLAIRBrainSeg, produces segmentations of 132 structures and is robust to multiple sclerosis lesions. Experiments on both in-domain and out-of-domain datasets demonstrate that our method outperforms modality-agnostic approaches based on image synthesis, the only currently available alternative for performing brain parcellation using FLAIR MRI alone. This technique holds promise for scenarios where T1-weighted MRIs are unavailable and offers a valuable alternative for clinicians and researchers in need of reliable anatomical segmentation.
Related papers
- CT-based brain ventricle segmentation via diffusion Schrödinger Bridge without target domain ground truths [0.9720086191214947]
Efficient and accurate brain ventricle segmentation from clinical CT scans is critical for emergency surgeries like ventriculostomy.
We introduce a novel uncertainty-aware ventricle segmentation technique without the need of CT segmentation ground truths.
Our method employs the diffusion Schr"odinger Bridge and an attention recurrent residual U-Net to capitalize on unpaired CT and MRI scans.
arXiv Detail & Related papers (2024-05-28T15:17:58Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via Generative Adversarial Network in small sample size settings [45.62331048595689]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.<n>We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Learning from imperfect training data using a robust loss function:
application to brain image segmentation [0.0]
In brain MRI analysis, head segmentation is commonly used for measuring and visualizing the brain's anatomical structures.
Here we propose a deep learning framework that can segment brain, skull, and extra-cranial tissue using only T1-weighted MRI as input.
arXiv Detail & Related papers (2022-08-08T19:08:32Z) - Multiple Sclerosis Lesions Segmentation using Attention-Based CNNs in
FLAIR Images [0.2578242050187029]
Multiple Sclerosis (MS) is an autoimmune, and demyelinating disease that leads to lesions in the central nervous system.
Up to now a multitude of multimodality automatic biomedical approaches is used to segment lesions.
Authors propose a method employing just one modality (FLAIR image) to segment MS lesions accurately.
arXiv Detail & Related papers (2022-01-05T21:37:43Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Comparison of atlas-based and neural-network-based semantic segmentation
for DENSE MRI images [0.8701566919381223]
Two segmentation methods, one atlas-based and one neural-network-based, were compared.
The segmentation is a pre-requisite for estimating the average displacements in these regions.
arXiv Detail & Related papers (2021-09-29T00:42:43Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Anatomy-guided Multimodal Registration by Learning Segmentation without
Ground Truth: Application to Intraprocedural CBCT/MR Liver Segmentation and
Registration [12.861503169117208]
Multimodal image registration has many applications in diagnostic medical imaging and image-guided interventions.
The ability to register peri-procedurally acquired diagnostic images into the intraprocedural environment can potentially improve the intra-procedural tumor targeting.
We propose an anatomy-preserving domain adaptation to segmentation network (APA2Seg-Net) for learning segmentation without target modality ground truth.
arXiv Detail & Related papers (2021-04-14T18:07:03Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.