Anatomy-guided Multimodal Registration by Learning Segmentation without
Ground Truth: Application to Intraprocedural CBCT/MR Liver Segmentation and
Registration
- URL: http://arxiv.org/abs/2104.07056v1
- Date: Wed, 14 Apr 2021 18:07:03 GMT
- Title: Anatomy-guided Multimodal Registration by Learning Segmentation without
Ground Truth: Application to Intraprocedural CBCT/MR Liver Segmentation and
Registration
- Authors: Bo Zhou, Zachary Augenfeld, Julius Chapiro, S. Kevin Zhou, Chi Liu,
James S. Duncan
- Abstract summary: Multimodal image registration has many applications in diagnostic medical imaging and image-guided interventions.
The ability to register peri-procedurally acquired diagnostic images into the intraprocedural environment can potentially improve the intra-procedural tumor targeting.
We propose an anatomy-preserving domain adaptation to segmentation network (APA2Seg-Net) for learning segmentation without target modality ground truth.
- Score: 12.861503169117208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal image registration has many applications in diagnostic medical
imaging and image-guided interventions, such as Transcatheter Arterial
Chemoembolization (TACE) of liver cancer guided by intraprocedural CBCT and
pre-operative MR. The ability to register peri-procedurally acquired diagnostic
images into the intraprocedural environment can potentially improve the
intra-procedural tumor targeting, which will significantly improve therapeutic
outcomes. However, the intra-procedural CBCT often suffers from suboptimal
image quality due to lack of signal calibration for Hounsfield unit, limited
FOV, and motion/metal artifacts. These non-ideal conditions make standard
intensity-based multimodal registration methods infeasible to generate correct
transformation across modalities. While registration based on anatomic
structures, such as segmentation or landmarks, provides an efficient
alternative, such anatomic structure information is not always available. One
can train a deep learning-based anatomy extractor, but it requires large-scale
manual annotations on specific modalities, which are often extremely
time-consuming to obtain and require expert radiological readers. To tackle
these issues, we leverage annotated datasets already existing in a source
modality and propose an anatomy-preserving domain adaptation to segmentation
network (APA2Seg-Net) for learning segmentation without target modality ground
truth. The segmenters are then integrated into our anatomy-guided multimodal
registration based on the robust point matching machine. Our experimental
results on in-house TACE patient data demonstrated that our APA2Seg-Net can
generate robust CBCT and MR liver segmentation, and the anatomy-guided
registration framework with these segmenters can provide high-quality
multimodal registrations. Our code is available at
https://github.com/bbbbbbzhou/APA2Seg-Net.
Related papers
- CT-based brain ventricle segmentation via diffusion Schrödinger Bridge without target domain ground truths [0.9720086191214947]
Efficient and accurate brain ventricle segmentation from clinical CT scans is critical for emergency surgeries like ventriculostomy.
We introduce a novel uncertainty-aware ventricle segmentation technique without the need of CT segmentation ground truths.
Our method employs the diffusion Schr"odinger Bridge and an attention recurrent residual U-Net to capitalize on unpaired CT and MRI scans.
arXiv Detail & Related papers (2024-05-28T15:17:58Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Structure-aware registration network for liver DCE-CT images [50.28546654316009]
We propose a novel structure-aware registration method by incorporating structural information of related organs with segmentation-guided deep registration network.
Our proposed method can achieve higher registration accuracy and preserve anatomical structure more effectively than state-of-the-art methods.
arXiv Detail & Related papers (2023-03-08T14:08:56Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - ISA-Net: Improved spatial attention network for PET-CT tumor
segmentation [22.48294544919023]
We propose a deep learning segmentation method based on multimodal positron emission tomography-computed tomography (PET-CT)
We design an improved spatial attention network(ISA-Net) to increase the accuracy of PET or CT in detecting tumors.
We validated the proposed ISA-Net method on two clinical datasets, a soft tissue sarcoma(STS) and a head and neck tumor(HECKTOR) dataset.
arXiv Detail & Related papers (2022-11-04T04:15:13Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Anatomy-Constrained Contrastive Learning for Synthetic Segmentation
without Ground-truth [8.513014699605499]
We developed an anatomy-constrained contrastive synthetic segmentation network (AccSeg-Net) to train a segmentation network for a target imaging modality.
We demonstrated successful applications on CBCT, MRI, and PET imaging data, and showed superior segmentation performances as compared to previous methods.
arXiv Detail & Related papers (2021-07-12T14:54:04Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Spatially Dependent U-Nets: Highly Accurate Architectures for Medical
Imaging Segmentation [10.77039660100327]
We introduce a novel deep neural network architecture that exploits the inherent spatial coherence of anatomical structures.
Our approach is well equipped to capture long-range spatial dependencies in the segmented pixel/voxel space.
Our method performs favourably to commonly used U-Net and U-Net++ architectures.
arXiv Detail & Related papers (2021-03-22T10:37:20Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Studying Robustness of Semantic Segmentation under Domain Shift in
cardiac MRI [0.8858288982748155]
We study challenges and opportunities of domain transfer across images from multiple clinical centres and scanner vendors.
In this work, we build upon a fixed U-Net architecture configured by the nnU-net framework to investigate various data augmentation techniques and batch normalization layers.
arXiv Detail & Related papers (2020-11-15T17:50:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.