Optimizing Specific and Shared Parameters for Efficient Parameter Tuning
- URL: http://arxiv.org/abs/2504.03450v1
- Date: Fri, 04 Apr 2025 13:43:54 GMT
- Title: Optimizing Specific and Shared Parameters for Efficient Parameter Tuning
- Authors: Van-Anh Nguyen, Thanh-Toan Do, Mehrtash Harandi, Dinh Phung, Trung Le,
- Abstract summary: We propose SaS, a novel PETL method that effectively mitigates distributional shifts during fine-tuning.<n>SaS captures common statistical characteristics across layers using low-rank projections.<n>Experiments on diverse downstream tasks, few-shot settings and domain generalization demonstrate that SaS significantly enhances performance.
- Score: 46.57365875007367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundation models, with a vast number of parameters and pretraining on massive datasets, achieve state-of-the-art performance across various applications. However, efficiently adapting them to downstream tasks with minimal computational overhead remains a challenge. Parameter-Efficient Transfer Learning (PETL) addresses this by fine-tuning only a small subset of parameters while preserving pre-trained knowledge. In this paper, we propose SaS, a novel PETL method that effectively mitigates distributional shifts during fine-tuning. SaS integrates (1) a shared module that captures common statistical characteristics across layers using low-rank projections and (2) a layer-specific module that employs hypernetworks to generate tailored parameters for each layer. This dual design ensures an optimal balance between performance and parameter efficiency while introducing less than 0.05% additional parameters, making it significantly more compact than existing methods. Extensive experiments on diverse downstream tasks, few-shot settings and domain generalization demonstrate that SaS significantly enhances performance while maintaining superior parameter efficiency compared to existing methods, highlighting the importance of capturing both shared and layer-specific information in transfer learning. Code and data are available at https://anonymous.4open.science/r/SaS-PETL-3565.
Related papers
- ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.<n>Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - Layer-wise Importance Matters: Less Memory for Better Performance in Parameter-efficient Fine-tuning of Large Language Models [19.163639128631534]
Importance-aware Sparse Tuning (IST) is a plug-and-play technique compatible with various PEFT methods that operate on a per-layer basis.
IST dynamically updates selected layers in PEFT modules, leading to reduced memory demands.
arXiv Detail & Related papers (2024-10-15T16:53:26Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - Parameter-Efficient Fine-Tuning With Adapters [5.948206235442328]
This research introduces a novel adaptation method utilizing the UniPELT framework as a base.
Our method employs adapters, which enable efficient transfer of pretrained models to new tasks with minimal retraining of the base model parameters.
arXiv Detail & Related papers (2024-05-09T01:40:38Z) - Prototype-based HyperAdapter for Sample-Efficient Multi-task Tuning [30.251155072822055]
Prototype-based HyperAdapter (PHA) is a novel framework built on the adapter-tuning and hypernetwork.
It introduces an instance-dense retriever and prototypical hypernetwork to generate conditional modules in a sample-efficient manner.
We show that PHA strikes a better trade-off between trainable parameters, accuracy on stream tasks, and sample efficiency.
arXiv Detail & Related papers (2023-10-18T02:42:17Z) - UniPT: Universal Parallel Tuning for Transfer Learning with Efficient
Parameter and Memory [69.33445217944029]
PETL is an effective strategy for adapting pre-trained models to downstream domains.
Recent PETL works focus on the more valuable memory-efficient characteristic.
We propose a new memory-efficient PETL strategy, Universal Parallel Tuning (UniPT)
arXiv Detail & Related papers (2023-08-28T05:38:43Z) - Parameter-Efficient Fine-Tuning without Introducing New Latency [7.631596468553607]
We introduce a novel adapter technique that directly applies the adapter to pre-trained parameters instead of the hidden representation.
Our proposed method attains a new state-of-the-art outcome in terms of both performance and storage efficiency, storing only 0.03% parameters of full fine-tuning.
arXiv Detail & Related papers (2023-05-26T08:44:42Z) - Sensitivity-Aware Visual Parameter-Efficient Fine-Tuning [91.5113227694443]
We propose a novel visual.
sensuous-aware fine-Tuning (SPT) scheme.
SPT allocates trainable parameters to task-specific important positions.
Experiments on a wide range of downstream recognition tasks show that our SPT is complementary to the existing PEFT methods.
arXiv Detail & Related papers (2023-03-15T12:34:24Z) - Scaling & Shifting Your Features: A New Baseline for Efficient Model
Tuning [126.84770886628833]
Existing finetuning methods either tune all parameters of the pretrained model (full finetuning) or only tune the last linear layer (linear probing)
We propose a new parameter-efficient finetuning method termed as SSF, representing that researchers only need to Scale and Shift the deep Features extracted by a pre-trained model to catch up with the performance full finetuning.
arXiv Detail & Related papers (2022-10-17T08:14:49Z) - Parameter-Efficient Sparsity for Large Language Models Fine-Tuning [63.321205487234074]
We propose a.
sparse-efficient Sparse Training (PST) method to reduce the number of trainable parameters during sparse-aware training.
Experiments with diverse networks (i.e., BERT, RoBERTa and GPT-2) demonstrate PST performs on par or better than previous sparsity methods.
arXiv Detail & Related papers (2022-05-23T02:43:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.