論文の概要: Conditioning Diffusions Using Malliavin Calculus
- arxiv url: http://arxiv.org/abs/2504.03461v1
- Date: Fri, 04 Apr 2025 14:10:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:49:00.236392
- Title: Conditioning Diffusions Using Malliavin Calculus
- Title(参考訳): Malliavin calculus を用いたコンディショニング拡散
- Authors: Jakiw Pidstrigach, Elizabeth Baker, Carles Domingo-Enrich, George Deligiannidis, Nikolas Nüsken,
- Abstract要約: 最適制御および条件生成モデリングにおいて、中央計算タスクは、与えられた端末時間報酬を最大化するために参照拡散プロセスを変更することである。
本稿では,Malliavin計算と部分によるパス空間の統合に基づく新しいフレームワークを提案する。
これにより, 人工的な観測ノイズを伴わずに, 分類, 拡散ブリッジ, 条件付けなど幅広い用途を扱えるようになった。
- 参考スコア(独自算出の注目度): 18.62300657866048
- License:
- Abstract: In stochastic optimal control and conditional generative modelling, a central computational task is to modify a reference diffusion process to maximise a given terminal-time reward. Most existing methods require this reward to be differentiable, using gradients to steer the diffusion towards favourable outcomes. However, in many practical settings, like diffusion bridges, the reward is singular, taking an infinite value if the target is hit and zero otherwise. We introduce a novel framework, based on Malliavin calculus and path-space integration by parts, that enables the development of methods robust to such singular rewards. This allows our approach to handle a broad range of applications, including classification, diffusion bridges, and conditioning without the need for artificial observational noise. We demonstrate that our approach offers stable and reliable training, outperforming existing techniques.
- Abstract(参考訳): 確率的最適制御と条件生成モデリングにおいて、中心的な計算タスクは、与えられた端末時間報酬を最大化するために参照拡散プロセスを変更することである。
既存のほとんどの手法では、この報酬を微分可能とし、グラデーションを使用して好ましい結果への拡散を操縦する。
しかし、拡散ブリッジのような多くの実践的な設定では、その報酬は特異であり、ターゲットがヒットしてゼロであれば無限の値を取る。
本稿では,Malliavin計算と部分によるパス空間の統合に基づく新しいフレームワークを提案する。
これにより, 人工的な観測ノイズを伴わずに, 分類, 拡散ブリッジ, 条件付けなど幅広い用途を扱えるようになった。
当社のアプローチは,既存のテクニックより優れた,安定的で信頼性の高いトレーニングを提供することを実証しています。
関連論文リスト
- Test-time Alignment of Diffusion Models without Reward Over-optimization [8.981605934618349]
拡散モデルは生成的タスクにおいて優れているが、特定の目的とそれらを整合させることは依然として困難である。
そこで本研究では,SMC(Sequential Monte Carlo)をベースとした学習自由なテスト時間手法を提案する。
単一逆最適化、多目的シナリオ、オンラインブラックボックス最適化において、その効果を実証する。
論文 参考訳(メタデータ) (2025-01-10T09:10:30Z) - Training-free Diffusion Model Alignment with Sampling Demons [15.400553977713914]
提案手法は,報酬関数やモデル再学習を介さずに,推論時の復調過程を導出するための最適化手法である。
提案手法は,高報酬に対応する領域の密度を最適化することにより,雑音分布の制御を行う。
実験の結果,提案手法は平均的美学のテキスト・ツー・イメージ生成を著しく改善することがわかった。
論文 参考訳(メタデータ) (2024-10-08T07:33:49Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
拡散モデルは、画像、分子、DNA、RNA、タンパク質配列の自然なデザイン空間を捉えるのに優れている。
これらの設計空間の自然性を保ちながら、下流の報酬関数を最適化することを目指している。
提案アルゴリズムは,中間雑音状態が将来高い報酬をもたらすことの先駆けとして,ソフトバリュー関数を統合する。
論文 参考訳(メタデータ) (2024-08-15T16:47:59Z) - A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization [7.378582040635655]
現在のディープラーニングアプローチは、正確なサンプル確率を生み出す生成モデルに依存している。
この研究は、この制限を解除し、高度に表現力のある潜在変数モデルを採用する可能性を開放する手法を導入する。
我々は,データフリーなコンビネーション最適化におけるアプローチを実験的に検証し,幅広いベンチマーク問題に対して新しい最先端の手法を実現することを実証した。
論文 参考訳(メタデータ) (2024-06-03T17:55:02Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
ガイダンスは拡散モデルにおいて重要な概念として機能するが、その効果は追加のデータアノテーションや事前学習の必要性によって制限されることが多い。
本稿では,拡散モデルからガイダンスを抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T11:19:11Z) - Manifold Preserving Guided Diffusion [121.97907811212123]
条件付き画像生成は、コスト、一般化可能性、タスク固有のトレーニングの必要性といった課題に直面している。
トレーニング不要な条件生成フレームワークであるManifold Preserving Guided Diffusion (MPGD)を提案する。
論文 参考訳(メタデータ) (2023-11-28T02:08:06Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
本稿では,事前学習した拡散モデルのh空間における解釈可能な方向を特定するための,教師なしおよび学習に基づく最初の手法を提案する。
我々は、事前訓練された拡散モデルのh-スペースで動作するシフト制御モジュールを用いて、サンプルをシフトしたバージョンに操作する。
それらを共同で最適化することで、モデルは自然に絡み合った、解釈可能な方向を発見する。
論文 参考訳(メタデータ) (2023-10-15T18:44:30Z) - Observation-Guided Diffusion Probabilistic Models [41.749374023639156]
観測誘導拡散確率モデル(OGDM)と呼ばれる新しい拡散に基づく画像生成法を提案する。
本手法は,観測プロセスの指導をマルコフ連鎖と統合することにより,トレーニング目標を再構築する。
本研究では,強力な拡散モデルベースライン上での多様な推論手法を用いたトレーニングアルゴリズムの有効性を示す。
論文 参考訳(メタデータ) (2023-10-06T06:29:06Z) - Towards Controllable Diffusion Models via Reward-Guided Exploration [15.857464051475294]
強化学習(RL)による拡散モデルの学習段階を導く新しい枠組みを提案する。
RLは、政策そのものではなく、指数スケールの報酬に比例したペイオフ分布からのサンプルによる政策勾配を計算することができる。
3次元形状と分子生成タスクの実験は、既存の条件拡散モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-04-14T13:51:26Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
我々はガウス過程の適用性を高める技術を開発した。
この観点から構築した効率的な近似を幅広く導入する。
非ユークリッド空間上のガウス過程モデルの集合を開発する。
論文 参考訳(メタデータ) (2022-02-22T01:42:57Z) - Scalable Bayesian Inverse Reinforcement Learning [93.27920030279586]
我々はAVRIL(Adroximate Variational Reward Imitation Learning)を紹介する。
本手法は,逆強化学習問題の誤った性質に対処する。
本手法を従来の制御シミュレーションと並行して実際の医療データに適用し,現在の手法の範囲を超えた環境におけるベイズ報酬推論を実証する。
論文 参考訳(メタデータ) (2021-02-12T12:32:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。