PINN-EMFNet: PINN-based and Enhanced Multi-Scale Feature Fusion Network for Breast Ultrasound Images Segmentation
- URL: http://arxiv.org/abs/2412.16937v1
- Date: Sun, 22 Dec 2024 09:16:00 GMT
- Title: PINN-EMFNet: PINN-based and Enhanced Multi-Scale Feature Fusion Network for Breast Ultrasound Images Segmentation
- Authors: Jiajun Ding, Beiyao Zhu, Wenjie Wang, Shurong Zhang, Dian Zhua, Zhao Liua,
- Abstract summary: This study proposes a PINN-based and Enhanced Multi-Scale Feature Fusion Network.
The network efficiently integrates and globally models multi-scale features through several structural innovations.
In the decoder section, a Multi-Scale Feature Refinement Decoder is employed, which, combined with a Multi-Scale Supervision Mechanism and a correction module, significantly improves segmentation accuracy and adaptability.
- Score: 5.246262946799736
- License:
- Abstract: With the rapid development of deep learning and computer vision technologies, medical image segmentation plays a crucial role in the early diagnosis of breast cancer. However, due to the characteristics of breast ultrasound images, such as low contrast, speckle noise, and the highly diverse morphology of tumors, existing segmentation methods exhibit significant limitations in terms of accuracy and robustness. To address these challenges, this study proposes a PINN-based and Enhanced Multi-Scale Feature Fusion Network. The network introduces a Hierarchical Aggregation Encoder in the backbone, which efficiently integrates and globally models multi-scale features through several structural innovations and a novel PCAM module. In the decoder section, a Multi-Scale Feature Refinement Decoder is employed, which, combined with a Multi-Scale Supervision Mechanism and a correction module, significantly improves segmentation accuracy and adaptability. Additionally, the loss function incorporating the PINN mechanism introduces physical constraints during the segmentation process, enhancing the model's ability to accurately delineate tumor boundaries. Comprehensive evaluations on two publicly available breast ultrasound datasets, BUSIS and BUSI, demonstrate that the proposed method outperforms previous segmentation approaches in terms of segmentation accuracy and robustness, particularly under conditions of complex noise and low contrast, effectively improving the accuracy and reliability of tumor segmentation. This method provides a more precise and robust solution for computer-aided diagnosis of breast ultrasound images.
Related papers
- multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information [1.7359724605901228]
Brain Tumor distances (BraTS) plays a critical role in clinical diagnosis, treatment planning, and monitoring the progression of brain tumors.
Due to the variability in tumor appearance, size, and intensity across different MRI modalities, automated segmentation remains a challenging task.
We propose a novel Transformer-based framework, multiPI-TransBTS, which integrates multi-physical information to enhance segmentation accuracy.
arXiv Detail & Related papers (2024-09-18T17:35:19Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Exploiting Precision Mapping and Component-Specific Feature Enhancement for Breast Cancer Segmentation and Identification [0.0]
We propose novel Deep Learning (DL) frameworks for breast lesion segmentation and classification.
We introduce a precision mapping mechanism (PMM) for a precision mapping and attention-driven LinkNet (PMAD-LinkNet) segmentation framework.
We also introduce a component-specific feature enhancement module (CSFEM) for a component-specific feature-enhanced classifier (CSFEC-Net)
arXiv Detail & Related papers (2024-07-03T06:40:26Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Large-Kernel Attention for 3D Medical Image Segmentation [14.76728117630242]
In this paper, a novel large- kernel (LK) attention module is proposed to achieve accurate multi-organ segmentation and tumor segmentation.
The advantages of convolution and self-attention are combined in the proposed LK attention module, including local contextual information, long-range dependence, and channel adaptation.
The module also decomposes the LK convolution to optimize the computational cost and can be easily incorporated into FCNs such as U-Net.
arXiv Detail & Related papers (2022-07-19T16:32:55Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Structure-aware scale-adaptive networks for cancer segmentation in
whole-slide images [11.55691272822487]
We present a structure-aware scale-adaptive feature selection method for efficient and accurate cancer segmentation.
Based on a segmentation network with a popular encoder-decoder architecture, a scale-adaptive module is proposed for selecting more robust features to represent the vague, non-rigid boundaries.
arXiv Detail & Related papers (2021-09-26T14:25:08Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
arXiv Detail & Related papers (2021-08-05T10:35:06Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.