Optimistic Learning for Communication Networks
- URL: http://arxiv.org/abs/2504.03499v1
- Date: Fri, 04 Apr 2025 14:55:27 GMT
- Title: Optimistic Learning for Communication Networks
- Authors: George Iosifidis, Naram Mhaisen, Douglas J. Leith,
- Abstract summary: This tutorial proposes the use of optimistic learning (OpL) as a decision engine for resource management frameworks in modern communication systems.<n>We introduce the fundamental concepts, algorithms and results of OpL, discuss the roots of this theory and present different approaches to defining and achieving optimism.
- Score: 16.33529267937042
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI/ML-based tools are at the forefront of resource management solutions for communication networks. Deep learning, in particular, is highly effective in facilitating fast and high-performing decision-making whenever representative training data is available to build offline accurate models. Conversely, online learning solutions do not require training and enable adaptive decisions based on runtime observations, alas are often overly conservative. This extensive tutorial proposes the use of optimistic learning (OpL) as a decision engine for resource management frameworks in modern communication systems. When properly designed, such solutions can achieve fast and high-performing decisions -- comparable to offline-trained models -- while preserving the robustness and performance guarantees of the respective online learning approaches. We introduce the fundamental concepts, algorithms and results of OpL, discuss the roots of this theory and present different approaches to defining and achieving optimism. We proceed to showcase how OpL can enhance resource management in communication networks for several key problems such as caching, edge computing, network slicing, and workload assignment in decentralized O-RAN platforms. Finally, we discuss the open challenges that must be addressed to unlock the full potential of this new resource management approach.
Related papers
- DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey [62.697565282841026]
Reinforcement learning (RL)-based large language models (LLMs) have gained significant attention.
Wireless networks require the empowerment of RL-based LLMs.
Wireless networks provide a vital infrastructure for the efficient training, deployment, and distributed inference of RL-based LLMs.
arXiv Detail & Related papers (2025-03-13T01:59:11Z) - Slicing for AI: An Online Learning Framework for Network Slicing Supporting AI Services [5.80147190706865]
6G networks will embrace a new realm of AI-driven services that requires innovative network slicing strategies.
This paper proposes an online learning framework to optimize the allocation of computational and communication resources to AI services.
arXiv Detail & Related papers (2024-10-20T14:38:54Z) - Large Language Models for Knowledge-Free Network Management: Feasibility Study and Opportunities [36.70339455624253]
This article presents a novel knowledge-free network management paradigm with the power of foundation models called large language models (LLMs)
LLMs can understand important contexts from input prompts containing minimal system information, thereby offering remarkable inference performance even for entirely new tasks.
Numerical results validate that knowledge-free LLMs are able to achieve comparable performance to existing knowledge-based optimization algorithms.
arXiv Detail & Related papers (2024-10-06T07:42:23Z) - Local Methods with Adaptivity via Scaling [38.99428012275441]
This paper aims to merge the local training technique with the adaptive approach to develop efficient distributed learning methods.
We consider the classical Local SGD method and enhance it with a scaling feature.
In addition to theoretical analysis, we validate the performance of our methods in practice by training a neural network.
arXiv Detail & Related papers (2024-06-02T19:50:05Z) - Fast Context Adaptation in Cost-Aware Continual Learning [10.515324071327903]
5G and Beyond networks require more complex learning agents and the learning process itself might end up competing with users for communication and computational resources.
This creates friction: on the one hand, the learning process needs resources to quickly convergence to an effective strategy; on the other hand, the learning process needs to be efficient, i.e. take as few resources as possible from the user's data plane, so as not to throttle users' resources.
In this paper, we propose a dynamic strategy to balance the resources assigned to the data plane and those reserved for learning.
arXiv Detail & Related papers (2023-06-06T17:46:48Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
We study a new model of multiple federated learning services at the multi-access edge computing server.
We propose a joint resource optimization and hyper-learning rate control problem, namely MS-FEDL.
Our simulation results demonstrate the convergence performance of our proposed algorithms.
arXiv Detail & Related papers (2020-11-25T01:29:41Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
Ultra-reliable and low-latency communications (URLLC) will be central for the development of various emerging mission-critical applications.
Deep learning algorithms have been considered as promising ways of developing enabling technologies for URLLC in future 6G networks.
This tutorial illustrates how domain knowledge can be integrated into different kinds of deep learning algorithms for URLLC.
arXiv Detail & Related papers (2020-09-13T14:53:01Z) - Communication-Efficient and Distributed Learning Over Wireless Networks:
Principles and Applications [55.65768284748698]
Machine learning (ML) is a promising enabler for the fifth generation (5G) communication systems and beyond.
This article aims to provide a holistic overview of relevant communication and ML principles, and thereby present communication-efficient and distributed learning frameworks with selected use cases.
arXiv Detail & Related papers (2020-08-06T12:37:14Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z) - Combining Federated and Active Learning for Communication-efficient
Distributed Failure Prediction in Aeronautics [0.0]
We present a new centralized distributed learning algorithm that relies on the learning paradigms of Active Learning and Federated Learning.
We evaluate this method on a public benchmark and show that its performances in terms of precision are very close to state-of-the-art performance level of non-distributed learning.
arXiv Detail & Related papers (2020-01-21T13:17:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.