AdaViT: Adaptive Vision Transformer for Flexible Pretrain and Finetune with Variable 3D Medical Image Modalities
- URL: http://arxiv.org/abs/2504.03589v1
- Date: Fri, 04 Apr 2025 16:57:06 GMT
- Title: AdaViT: Adaptive Vision Transformer for Flexible Pretrain and Finetune with Variable 3D Medical Image Modalities
- Authors: Badhan Kumar Das, Gengyan Zhao, Han Liu, Thomas J. Re, Dorin Comaniciu, Eli Gibson, Andreas Maier,
- Abstract summary: We propose an adaptive Vision Transformer (AdaViT) framework capable of handling variable set of input modalities for each case.<n>We demonstrate that this architecture effectively transfers supervised pretrained models to new datasets with different input modality/contrast sets.<n>For self-supervised pretrain, the proposed method is able to maximize the pretrain data and facilitate transferring to diverse downstream tasks with variable sets of input modalities.
- Score: 9.006543373916314
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretrain techniques, whether supervised or self-supervised, are widely used in deep learning to enhance model performance. In real-world clinical scenarios, different sets of magnetic resonance (MR) contrasts are often acquired for different subjects/cases, creating challenges for deep learning models assuming consistent input modalities among all the cases and between pretrain and finetune. Existing methods struggle to maintain performance when there is an input modality/contrast set mismatch with the pretrained model, often resulting in degraded accuracy. We propose an adaptive Vision Transformer (AdaViT) framework capable of handling variable set of input modalities for each case. We utilize a dynamic tokenizer to encode different input image modalities to tokens and take advantage of the characteristics of the transformer to build attention mechanism across variable length of tokens. Through extensive experiments, we demonstrate that this architecture effectively transfers supervised pretrained models to new datasets with different input modality/contrast sets, resulting in superior performance on zero-shot testing, few-shot finetuning, and backward transferring in brain infarct and brain tumor segmentation tasks. Additionally, for self-supervised pretrain, the proposed method is able to maximize the pretrain data and facilitate transferring to diverse downstream tasks with variable sets of input modalities.
Related papers
- Dita: Scaling Diffusion Transformer for Generalist Vision-Language-Action Policy [56.424032454461695]
We present Dita, a scalable framework that leverages Transformer architectures to directly denoise continuous action sequences.<n>Dita employs in-context conditioning -- enabling fine-grained alignment between denoised actions and raw visual tokens from historical observations.<n>Dita effectively integrates cross-embodiment datasets across diverse camera perspectives, observation scenes, tasks, and action spaces.
arXiv Detail & Related papers (2025-03-25T15:19:56Z) - Self-Supervised Modality-Agnostic Pre-Training of Swin Transformers [0.7496510641958004]
We augment the Swin Transformer to learn from different medical imaging modalities, enhancing downstream performance.
Our model, dubbed SwinFUSE, offers three key advantages: (i) it learns from both Computed Tomography (CT) and Magnetic Resonance Images (MRI) during pre-training, resulting in complementary feature representations; (ii) a domain-invariance module (DIM) that effectively highlights salient input regions, enhancing adaptability; (iii) exhibits remarkable generalizability, surpassing the confines of tasks it was initially pre-trained on.
arXiv Detail & Related papers (2024-05-21T13:28:32Z) - MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
Foundation models have reshaped the landscape of Remote Sensing (RS) by enhancing various image interpretation tasks.
transferring the pretrained models to downstream tasks may encounter task discrepancy due to their formulation of pretraining as image classification or object discrimination tasks.
We conduct multi-task supervised pretraining on the SAMRS dataset, encompassing semantic segmentation, instance segmentation, and rotated object detection.
Our models are finetuned on various RS downstream tasks, such as scene classification, horizontal and rotated object detection, semantic segmentation, and change detection.
arXiv Detail & Related papers (2024-03-20T09:17:22Z) - Learning Causal Domain-Invariant Temporal Dynamics for Few-Shot Action Recognition [12.522600594024112]
Few-shot action recognition aims at quickly adapting a pre-trained model to novel data.
Key challenges include how to identify and leverage the transferable knowledge learned by the pre-trained model.
We propose CDTD, or Causal Domain-Invariant Temporal Dynamics for knowledge transfer.
arXiv Detail & Related papers (2024-02-20T04:09:58Z) - Morphing Tokens Draw Strong Masked Image Models [28.356863521946607]
Masked image modeling (MIM) has emerged as a promising approach for pre-training Vision Transformers (ViTs)<n>We introduce Dynamic Token Morphing (DTM), a novel method that dynamically aggregates tokens while preserving context to generate contextualized targets.<n>DTM is compatible with various SSL frameworks; we showcase significantly improved MIM results, barely introducing extra training costs.
arXiv Detail & Related papers (2023-12-30T14:53:09Z) - Generalized Face Forgery Detection via Adaptive Learning for Pre-trained Vision Transformer [54.32283739486781]
We present a textbfForgery-aware textbfAdaptive textbfVision textbfTransformer (FA-ViT) under the adaptive learning paradigm.
FA-ViT achieves 93.83% and 78.32% AUC scores on Celeb-DF and DFDC datasets in the cross-dataset evaluation.
arXiv Detail & Related papers (2023-09-20T06:51:11Z) - Learning to Mask and Permute Visual Tokens for Vision Transformer Pre-Training [55.12082817901671]
We propose a new self-supervised pre-training approach, named Masked and Permuted Vision Transformer (MaPeT)
MaPeT employs autoregressive and permuted predictions to capture intra-patch dependencies.
Our results demonstrate that MaPeT achieves competitive performance on ImageNet, compared to baselines and competitors under the same model setting.
arXiv Detail & Related papers (2023-06-12T18:12:19Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
In this paper, we investigate the transfer performance of various types of self-supervised methods, including MoCo and SimCLR, on three downstream tasks.
We find that their performances are sub-optimal or even lag far behind the single-task baseline.
We propose a simple yet effective pretrain-adapt-finetune paradigm for general multi-task training.
arXiv Detail & Related papers (2022-09-19T12:15:31Z) - DynaST: Dynamic Sparse Transformer for Exemplar-Guided Image Generation [56.514462874501675]
We propose a dynamic sparse attention based Transformer model to achieve fine-level matching with favorable efficiency.
The heart of our approach is a novel dynamic-attention unit, dedicated to covering the variation on the optimal number of tokens one position should focus on.
Experiments on three applications, pose-guided person image generation, edge-based face synthesis, and undistorted image style transfer, demonstrate that DynaST achieves superior performance in local details.
arXiv Detail & Related papers (2022-07-13T11:12:03Z) - ProFormer: Learning Data-efficient Representations of Body Movement with
Prototype-based Feature Augmentation and Visual Transformers [31.908276711898548]
Methods for data-efficient recognition from body poses increasingly leverage skeleton sequences structured as image-like arrays.
We look at this paradigm from the perspective of transformer networks, for the first time exploring visual transformers as data-efficient encoders of skeleton movement.
In our pipeline, body pose sequences cast as image-like representations are converted into patch embeddings and then passed to a visual transformer backbone optimized with deep metric learning.
arXiv Detail & Related papers (2022-02-23T11:11:54Z) - MIA-Former: Efficient and Robust Vision Transformers via Multi-grained
Input-Adaptation [14.866949449862226]
Vision Transformer (ViT) models are too computationally expensive to be fitted onto real-world resource-constrained devices.
We propose a Multi-grained Input-adaptive Vision Transformer framework dubbed MIA-Former that can input-adaptively adjust the structure of ViTs.
Experiments and ablation studies validate that the proposed MIA-Former framework can effectively allocate budgets adaptive to the difficulty of input images.
arXiv Detail & Related papers (2021-12-21T22:06:24Z) - Entropy optimized semi-supervised decomposed vector-quantized
variational autoencoder model based on transfer learning for multiclass text
classification and generation [3.9318191265352196]
We propose a semisupervised discrete latent variable model for multi-class text classification and text generation.
The proposed model employs the concept of transfer learning for training a quantized transformer model.
Experimental results indicate that the proposed model has surpassed the state-of-the-art models remarkably.
arXiv Detail & Related papers (2021-11-10T07:07:54Z) - Contrastively Disentangled Sequential Variational Autoencoder [20.75922928324671]
We propose a novel sequence representation learning method, named Contrastively Disentangled Sequential Variational Autoencoder (C-DSVAE)
We use a novel evidence lower bound which maximizes the mutual information between the input and the latent factors, while penalizes the mutual information between the static and dynamic factors.
Our experiments show that C-DSVAE significantly outperforms the previous state-of-the-art methods on multiple metrics.
arXiv Detail & Related papers (2021-10-22T23:00:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.