EnrichIndex: Using LLMs to Enrich Retrieval Indices Offline
- URL: http://arxiv.org/abs/2504.03598v1
- Date: Fri, 04 Apr 2025 17:08:46 GMT
- Title: EnrichIndex: Using LLMs to Enrich Retrieval Indices Offline
- Authors: Peter Baile Chen, Tomer Wolfson, Michael Cafarella, Dan Roth,
- Abstract summary: Real-world retrieval systems are often required to implicitly reason whether a document is relevant.<n>Large language models (LLMs) hold great potential in identifying such implied relevance by leveraging their reasoning skills.<n>We introduce EnrichIndex, a retrieval approach which uses the LLM offline to build semantically-enriched retrieval indices.
- Score: 47.064685680644345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing information retrieval systems excel in cases where the language of target documents closely matches that of the user query. However, real-world retrieval systems are often required to implicitly reason whether a document is relevant. For example, when retrieving technical texts or tables, their relevance to the user query may be implied through a particular jargon or structure, rather than explicitly expressed in their content. Large language models (LLMs) hold great potential in identifying such implied relevance by leveraging their reasoning skills. Nevertheless, current LLM-augmented retrieval is hindered by high latency and computation cost, as the LLM typically computes the query-document relevance online, for every query anew. To tackle this issue we introduce EnrichIndex, a retrieval approach which instead uses the LLM offline to build semantically-enriched retrieval indices, by performing a single pass over all documents in the retrieval corpus once during ingestion time. Furthermore, the semantically-enriched indices can complement existing online retrieval approaches, boosting the performance of LLM re-rankers. We evaluated EnrichIndex on five retrieval tasks, involving passages and tables, and found that it outperforms strong online LLM-based retrieval systems, with an average improvement of 11.7 points in recall @ 10 and 10.6 points in NDCG @ 10 compared to strong baselines. In terms of online calls to the LLM, it processes 293.3 times fewer tokens which greatly reduces the online latency and cost. Overall, EnrichIndex is an effective way to build better retrieval indices offline by leveraging the strong reasoning skills of LLMs.
Related papers
- Zero-Shot Dense Retrieval with Embeddings from Relevance Feedback [17.986392250269606]
We introduce Real Document Embeddings from Relevance Feedback (ReDE-RF)
Inspired by relevance feedback, ReDE-RF proposes to re-frame hypothetical document generation as a relevance estimation task.
Our experiments show that ReDE-RF consistently surpasses state-of-the-art zero-shot dense retrieval methods.
arXiv Detail & Related papers (2024-10-28T17:40:40Z) - Efficiency Unleashed: Inference Acceleration for LLM-based Recommender Systems with Speculative Decoding [61.45448947483328]
We introduce Lossless Acceleration via Speculative Decoding for LLM-based Recommender Systems (LASER)
LASER features a Customized Retrieval Pool to enhance retrieval efficiency and Relaxed Verification to improve the acceptance rate of draft tokens.
LASER achieves a 3-5x speedup on public datasets and saves about 67% of computational resources during the online A/B test.
arXiv Detail & Related papers (2024-08-11T02:31:13Z) - LightPAL: Lightweight Passage Retrieval for Open Domain Multi-Document Summarization [9.739781953744606]
Open-Domain Multi-Document Summarization (ODMDS) is the task of generating summaries from large document collections in response to user queries.
Traditional retrieve-then-summarize approaches fall short for open-ended queries in ODMDS tasks.
We propose LightPAL, a lightweight passage retrieval method for ODMDS.
arXiv Detail & Related papers (2024-06-18T10:57:27Z) - PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval [76.50690734636477]
We propose PromptReps, which combines the advantages of both categories: no need for training and the ability to retrieve from the whole corpus.
The retrieval system harnesses both dense text embedding and sparse bag-of-words representations.
arXiv Detail & Related papers (2024-04-29T04:51:30Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
Verifiable generation aims to let the large language model (LLM) generate text with supporting documents.
We propose LLatrieval (Large Language Model Verified Retrieval), where the LLM updates the retrieval result until it verifies that the retrieved documents can sufficiently support answering the question.
Experiments show that LLatrieval significantly outperforms extensive baselines and achieves state-of-the-art results.
arXiv Detail & Related papers (2023-11-14T01:38:02Z) - Context Aware Query Rewriting for Text Rankers using LLM [5.164642900490078]
We analyze the utility of large-language models for improved query rewriting for text ranking tasks.
We adopt a simple, yet surprisingly effective, approach called context aware query rewriting (CAR)
We find that fine-tuning a ranker using re-written queries offers a significant improvement of up to 33% on the passage ranking task and up to 28% on the document ranking task.
arXiv Detail & Related papers (2023-08-31T14:19:50Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
Large Language Models (LLMs) play powerful, black-box readers in the retrieve-then-read pipeline.
This work introduces a new framework, Rewrite-Retrieve-Read instead of the previous retrieve-then-read for the retrieval-augmented LLMs.
arXiv Detail & Related papers (2023-05-23T17:27:50Z) - Description-Based Text Similarity [59.552704474862004]
We identify the need to search for texts based on abstract descriptions of their content.
We propose an alternative model that significantly improves when used in standard nearest neighbor search.
arXiv Detail & Related papers (2023-05-21T17:14:31Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.